

Ultra-Low Noise Amplifier Tuning Range: 2.3 – 3.8 GHz

Features

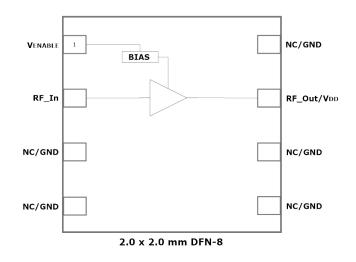
Reference: 5V/70mA/2.5 GHz

- Gain: 19.8 dB
- Eval Board NF: 0.55 dB
- 0P1dB: 20.0 dBm
- 0IP3: 37.5 dBm
- Flexible Bias Voltage and Current
- Process: GaAs pHEMT

Applications

- Cellular Infrastructure
- Small Cells and Cellular Repeaters
- Distributed Antenna Systems

Product Description


GRF2072 is a broadband, linear, ultra-low noise amplifier designed for small cell, wireless infrastructure and other high performance RF applications requiring ultra-low NF, high gain and linearity.

Configured as a first stage LNA, linear driver or cascaded gain block, it offers high levels of reuse both within a design and across platforms.

GRF2072 is a member of a family of pin compatible, ultra low noise devices which cover a wide range of frequency bands with industry leading NF and gain:

- GRF2070: 0.4 to 1.5 GHz
- GRF2071: 0.7 to 2.7 GHz
- GRF2072: 2.3 to 3.8 GHz
- GRF2073: 3.0 to 5.0 GHz

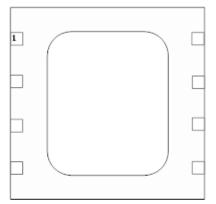
Consult with the GRF applications engineering team for application notes, custom tuning/evaluation board data and device s-parameters.

Absolute Ratings:

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	Vdd	0	6.0	V
RF Input Power: (Load VSWR < 2:1; V _D : 5.0 volts)	P _{IN MAX}		23	dBm
Operating Temperature (Package Heat Sink)	Т _{АМВ}	-40	105	°C
Maximum Channel Temperature (MTTF > 10^6 Hours)	Тмах		170	°C
Maximum Dissipated Power	PDISS MAX		500	mW
Electrostatic Discharge:				
Charged Device Model:	CDM	1500		V
Human Body Model:	HBM	500		V
Storage:				
Storage Temperature	Тѕтс	-65	150	°C
Moisture Sensitivity Level	MSL		1	

Caution! ESD Sensitive Device

Exceeding Absolute Maximum Rating conditions may cause permanent damage to the device.


Note: For package dimensions and manufacturing information, see the Guerrilla-RF.com website for the following document located on the GRF2072 landing page: Manufacturing Note—MN-001 Product Tape and Reel, Solderability and Package Outline Specification.

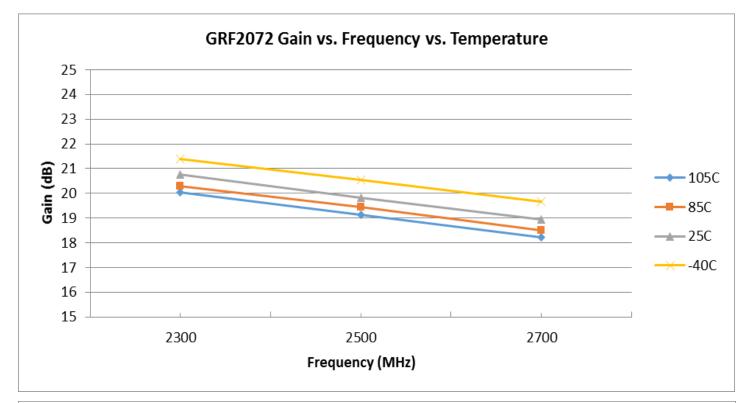
Link to manufacturing note

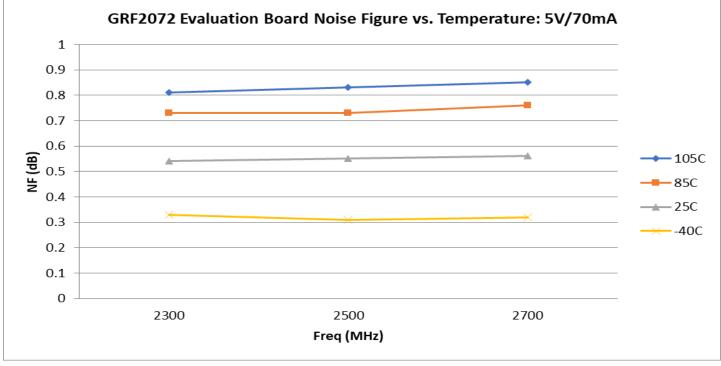
GRF2072

Pin Out (Top View)

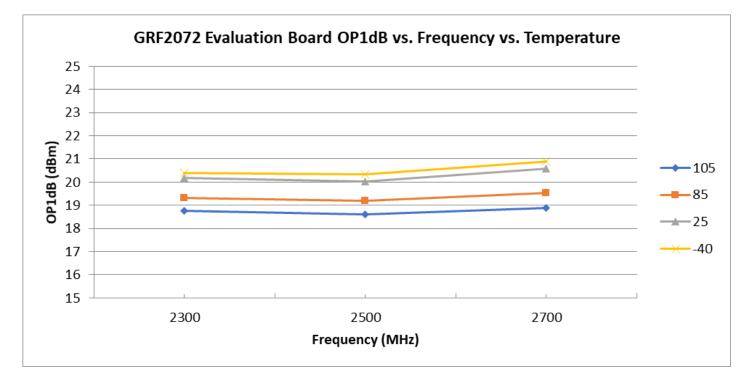
Pin Assignments:

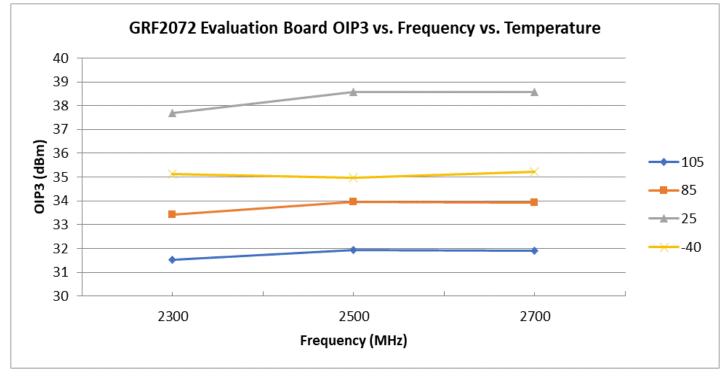
Pin	Name	Description	Note
1	VENABLE	Enable Voltage Input	VENABLE and series resistor set IDDQ. VENABLE < =0.2 volts disables device. On -die pull-down resistor will turn the part off if this node is allowed to float.
2	RF_In	RF Input	External match must provide DC block
3	NC/GND	No Connect or Ground	No internal connection to die
4	NC/GND	No Connect or Ground	No internal connection to die
5	NC/GND	No Connect or Ground	No internal connection to die
6	NC/GND	No Connect or Ground	No internal connection to die
7	RF_Out/VDD	RF Output	Provide device VDD via external bias inductor
8	NC/GND	No Connect or Ground	No internal connection to die
PKG BASE	GND	Ground	Provides DC and RF ground for LNA, as well as thermal heat sink. Recom- mend multiple 8 mil vias beneath the package for optimal RF and thermal performance. Refer to evaluation board top layer graphic on schematic page.


Nominal Operating Parameters:

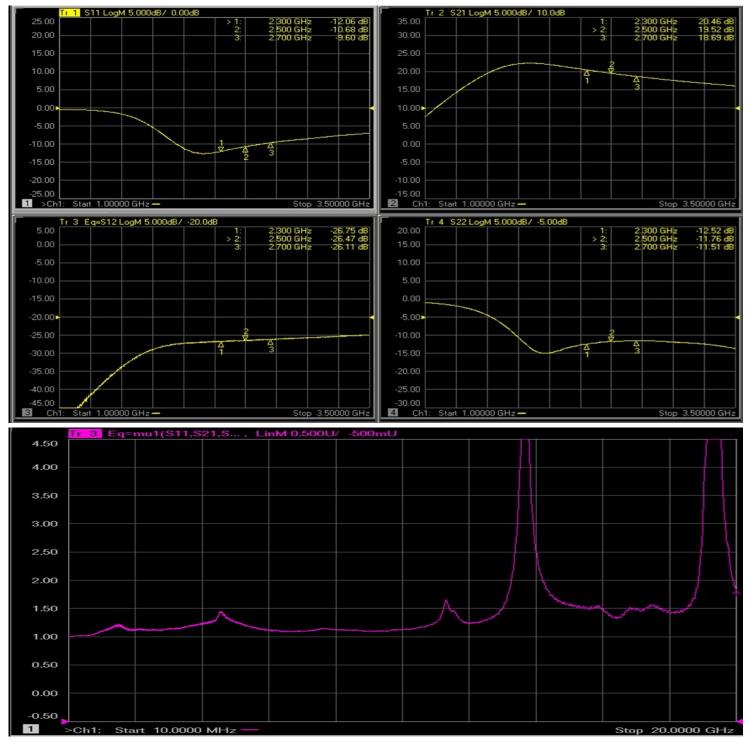

Parameter	Symbol	Specification		Unit	Condition		
Falailletei	Symbol	Min.	Typ. Max.		Ont	Condition	
Gain Mode (Venable high)						V _{DD} = 5.0 V, T _A = 25 °C	
Test Frequency	FTEST		2.5		GHz	2.5 to 2.7 GHz Tune	
Evaluation Board Gain	S21		19.8		dB		
Evaluation Board Noise Figure	NF		0.55		dB	Evaluation Board SMA to SMA	
Output 3rd Order Intercept Point	OIP3		37.5		dBm	+3 dBm Pout per tone at 2 MHz Spacing (2499 and 2501 MHz)	
Output 1dB Compression Point	OP1dB		20.0		dBm		
Switching Rise Time	TRISE		500		ns		
Switching Fall Time	TFALL		500		ns		
Supply Current	lod		70		mA	Adjustable for optimal IP3	
Enable Current	IENABLE		3.5		mA		
Thermal Data							
Thermal Resistance (measured via IR scan)	Θјс		54		°C/W	On standard evaluation board	
Channel Temperature @ +85 C Reference (Package Heat Sink)	TCHANNEL		104		٥C	Vdd: 5.0 V; Iddq: 70 mA; No RF; Pdiss: 350 mW	

GRF2072 Evaluation Board Measured Data:



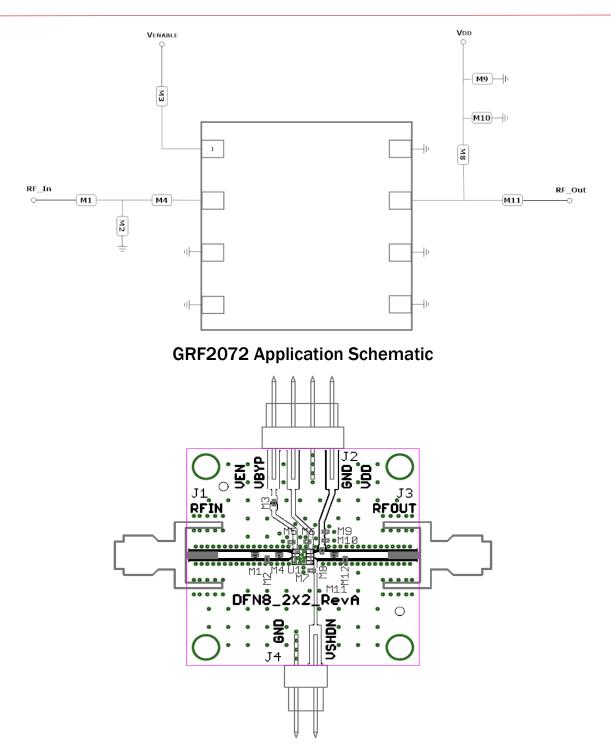


GRF2072 Evaluation Board Measured Data:



Ultra-Low Noise Amplifier Tuning Range: 2.3 – 3.8 GHz

GRF2072 Evaluation Board S-Pars: (2.5 to 2.7 GHz Match)

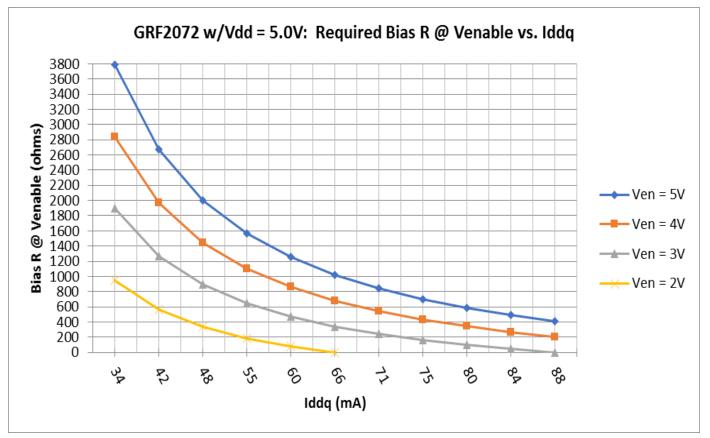

Note: Mu factor >= 1.0 implies unconditional stability.

GRF2072

Preliminary

Ultra-Low Noise Amplifier Tuning Range: 2.3 – 3.8 GHz

GRF2072 EVB Assembly Drawing



Ultra-Low Noise Amplifier Tuning Range: 2.3 – 3.8 GHz

Component	Туре	Manufacturer	Family	Value	Package Size	Substitution
M1	Capacitor	Murata	GJM	20 pF	0402	ok
M2	Inductor	Murata	LQG	2.7 nH	0402	ok
M3 (See curves)	Resistor	Various	5%	Sets Iddq	0402	ok
M4	Capacitor	Murata	GRM	2.2 pF	0402	ok
M8	Inductor	Murata	LQG	2.7 nH	0402	ok
M9	Capacitor	Murata	GRM	0.1 uF	0402	ok
M10	Capacitor	Murata	GRM	100 pF	0402	ok
M11	Capacitor	Murata	GRM	2.0 pF	0402	ok
Evaluation Board	DFN8_2x2_RevA	_	_	_	_	_

GRF2072 Standard Evaluation Board BOM: (2.5 to 2.7 GHz Tune)

GRF2072 Bias Resistor Selection Curves:

Ultra-Low Noise Amplifier Tuning Range: 2.3 – 3.8 GHz

Data Sheet Release Status:	Notes
Advance	S-parameter and NF data based on EM simulations for the fully packaged device using foundry supplied transistor s-parameters. Linearity estimates based on de- vice size, bias condition and experience with related devices.
Preliminary	All data based on evaluation board measurements in the Guerrilla RF Applications Lab.
Released	All data based on device qualification data. Typically, this data is nearly identical to the data found in the preliminary version. Max and min values for key RF parameters are included.

Information in this datasheet is specific to the Guerrilla RF, Inc. ("Guerrilla RF") product identified.

This datasheet, including the information contained in it, is provided by Guerrilla RF as a service to its customers and may be used for informational purposes only by the customer. Guerrilla RF assumes no responsibility for errors or omissions on this datasheet or the information contained herein. Information provided is believed to be accurate and reliable, however, no responsibility is assumed by Guerrilla RF for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. Guerrilla RF assumes no liability for any datasheet, datasheet information, materials, products, product information, or other information provided hereunder, including the sale, distribution, reproduction or use of Guerrilla RF products, information or materials.

No license, whether express, implied, by estoppel, by implication or otherwise is granted by this datasheet for any intellectual property of Guerrilla RF, or any third party, including without limitation, patents, patent rights, copyrights, trademarks and trade secrets. All rights are reserved by Guerrilla RF.

All information herein, products, product information, datasheets, and datasheet information are subject to change and availability without notice. Guerrilla RF reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice. Guerrilla RF may further change its datasheet, product information, documentation, products, services, specifications or product descriptions at any time, without notice. Guerrilla RF makes no commitment to update any materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

GUERRILLA RF INFORMATION, PRODUCTS, PRODUCT INFORMATION, DATASHEETS AND DATASHEET INFORMATION ARE PROVIDED "AS IS" AND WITHOUT WAR-RANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. GUER-RILLA RF DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATE-RIALS. GUERRILLA RF SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSE-QUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFOR-MATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Customers are solely responsible for their use of Guerrilla RF products in the Customer's products and applications or in ways which deviate from Guerrilla RF's published specifications, either intentionally or as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Guerrilla RF assumes no liability or responsibility for applications assistance, customer product design, or damage to any equipment resulting from the use of Guerrilla RF products outside of stated published specifications or parameters.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

GRF2072 GRF2072-EVB