

内置高压启动无VCC电容隔离型LED恒流驱动芯片

描述

SDH7612DH 是一款高精度、低成本的原边反馈 LED 恒流驱动芯片,应用于反激隔离 LED 照明。

芯片工作在电感电流断续模式,适用于 90Vac~265Vac 输入电压、12W~18W 输出功率。

SDH7612DH 集成 600V 高压功率 MOS,内置高压启动电路,无需启动电阻和辅助绕组即能实现芯片的自主供电;SDH7612DH 无需外部 VCC电容;极大节省了系统成本。

SDH7612DH内部集成多种保护功能,包括过压保护,过热调节等,增强了系统安全性和可靠性。

SDH7612DH 采用 DIP-8A-300-2.54 封装。

特性

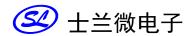
±3%LED 输出电流精度 内置 600V 高压功率 MOS 内置高压启动模块 无需 VCC 电容

无需环路补偿

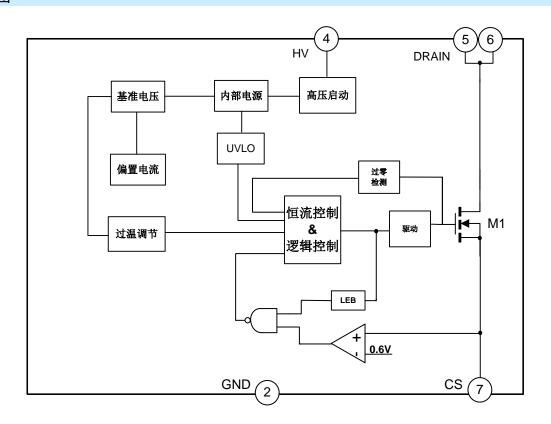
LED 开路保护

过热调节功能

无辅助绕组

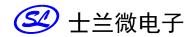

应用

GU10 LED 射灯 LED 球泡灯 PAR 灯


◆ 其他 LED 照明

产品规格分类

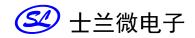
产品名称	封装类型	环保等级	包装方式	
SDH7612DH	DIP-8A-300-2.54	无卤	料管	


内部框图

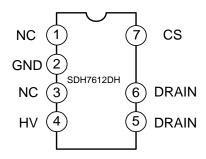
极限参数(除非特殊说明, T_{amb}=25°C)

参数	符号	参 数 范 围	单 位		
MOS管的极限参数					
漏栅电压(R _{GS} =1MΩ)	V_{DGR}	600	V		
栅源(地)电压	V _{GS}	±30	V		
漏端电流脉冲**	I _{DM}	7	Α		
漏端连续电流(Tamb=25°C)		1.7			
漏端连续电流(Tamb=100°C)	l _D	1	Α		
信号脉冲雪崩能量	EAS	120	mJ		
电路的极限参数					
VCC引脚最大电源电流	I _{CC_MAX}	5	mA		
CS电流采样端	V _{CS}	-0.3~6	V		
工作结温	TJ	-40~150	°C		
贮存温度范围	T _{STG}	-55~150	°C		
ESD (人体模式)	ESD	2500	V		

版本号: 1.0 共8页 第2页

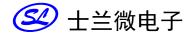


电气参数 (内置 MOSFET 部分,除非特别说明,T_{amb}=25°C)


参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V_{GS} =0 V , I_D =250 μ A	600			V
零栅压漏端电流	I _{DSS}	V _{DS} =600V, V _{GS} =0V		-	1.0	μΑ
栅源漏电流	I _{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$			±100	nA
栅极开启电压	V _{GS (th)}	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	2.0		4.0	V
静态漏源导通电阻	R _{DS(ON)}	V _{GS} =10V, I _D =0.2A		3.8		Ω
输入电容	C _{ISS}			259		pF
输出电容	Coss	$V_{GS}=0V$, $V_{DS}=25V$, $f=1MHz$		28.3		pF
反向传输电容	C _{RSS}			2.5		pF

电气参数(除非特殊说明, V_{cc}=10V, T_{amb}=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
供电电源部分						
VCC 工作电压	V _{CC} _	HV 加 90V		10.8		V
工作电流	I _{OP}			180		μΑ
电流采样						
电流检测阈值	V _{CS_TH}		590	600	610	mV
前沿消隐时间	T _{LEB}			380		nS
时间相关						
最大导通时间	T _{ON,MAX}			38		uS
输出空载保护时间	T _{OVP}			4.2		uS
最小关断时间	T _{OFF,MIN}			2.5		uS
最大关断时间	T _{OFF,MAX}			300		uS
工作频率						
最小工作频率	F _{MIN}			3		KHZ
过温保护部分						
过热调节温度	T _{REG}			145		°C
过热保护温度				165		


管脚排列图

管脚描述

管脚号	管脚名称	I/O	功能描述
1	NC	/	无连接,可与 GND PIN 连接
2	GND	Р	芯片地
3	NC	/	不连接引脚
4	HV	I	高压供电脚
5	DRAIN	I	内部高管功率管漏极
6	DRAIN	I	内部高管功率管漏极
7	CS	0	外接检测电阻

版本号: 1.0 共8页 第4页

功能描述

SDH7612DH芯片各功能具体描述如下。

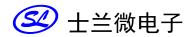
1. 启动控制

SDH7612DH集成了高压启动供电电路,无需启动电阻和辅助绕组供电。芯片通过HV端直接从高压端口取电,给内部电源VCC供电,极大的简化了外围电路,同时也减小了系统启动时间。系统上电后,芯片通过HV端、经过高压启动电路给VCC和VDD充电,当VDD电压达到芯片开启阈值时,芯片开始工作,特色的电路设计,也使得芯片无需外部电源电容就能稳定工作。

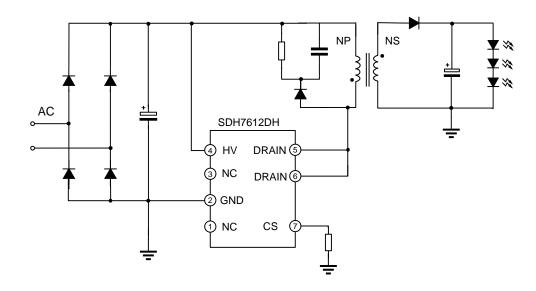
2. 恒流控制

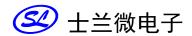
LED输出电流计算公式为:

$$I_{LED} = \frac{V_{CS}}{4 * R_{CS}} * \frac{N_P}{N_S}$$

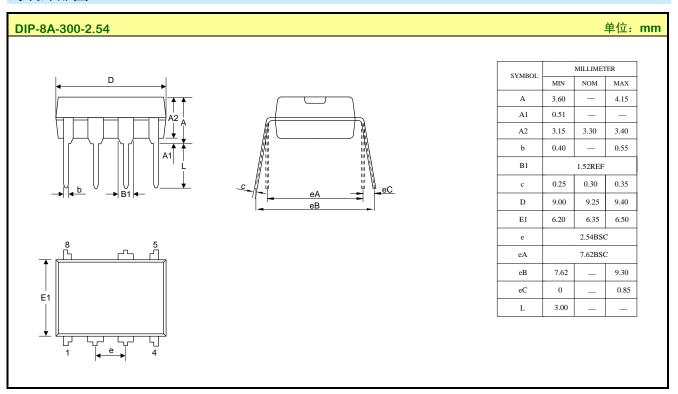

其中Np是变压器源边匝数; Ns是副边匝数。Vcs为内部基准电压, 0.6V。Rcs为电流采样电阻。

3. 保护功能


SDH7612DH内置完善的保护功能,包括LED开路保护,欠压保护、过热调节等。当LED短路时,系统工作在3KHz的低频,保证较低的功耗。当LED开路时,输出电压逐渐升高,退磁时间逐渐缩小,当小于内部设定的Tovp时,芯片触发过压保护。


4. 内设过热调节功能

内部设置过热调节功能,当芯片温度超过145°C后,输出电流将会逐步下降。当芯片温度高于165°C后,触发过热保护,直到芯片温度降低到155°C附近,重启工作。



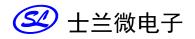
典型应用线路图

封装外形图

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:操作人员要通过防静电腕带接地。

设备外壳必须接地。


装配过程中使用的工具必须接地。

必须采用导体包装或抗静电材料包装或运输。

重要注意事项:

- ◆ 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和完整。
- ◆ 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- ◆ 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http://www.silan.com.cn

版本号: 1.0

SDH7612DH 说明书

产品名称: SDH7612DH 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司 http://www.silan.com.cn