自校准、带 TPOS 的速度传感器芯片

功能

- 针对汽车凸轮轴传感进行了优化
- 上电后(TPOS) 和零转速下目标识别
- 斩波功能减少失调偏移
- 数字输出极性可选:跟随或反向
- 快速从校准模式过渡到运行模式
- 校准过程中的自动增益控制 (AGC) 消除了气隙变化带来的影响
- 全工作温度范围内精确计时
- 可在最低 3.3 V 电源下工作
- 欠压锁定 (UVLO)

封装: SIP-4M(后缀 IM-P)

说明

SC9675IM-P 是赛卓真正上电状态 (TPOS) 传感器 IC 系列的第一代产品,与以前产品相比,精度有所提高,并能在零转速下运行。输出极性选项允许针对特定应用进行定制。

该芯片集成了单个霍尔元件,处理电路,带有优化的定制磁路,可根据磁信号进行切换。芯片的输出结果是对铁磁性目标轮轮廓的数字表示。

处理电路包含一个精密的数字电路,旨在消除 磁场和系统偏移的不利影响。信号处理算法用于在 零转速时识别目标状态,无论气隙大小,开关点保持 一致,并使器件能动态适应汽车环境中的典型工作 条件,尤其是凸轮传感应用。

高分辨率峰值检测 DAC 用于设置器件的自适应开关阈值。SC9675IM-P 还内置了一个滤波器,可提高电路的噪声抑制能力和信噪比。

目录

1.	功能框图	- 3 -
2.	<i>管脚定义</i>	- 3 -
3.	<i>订购信息</i>	- 4 -
4.	极限参数	- 5 -
5.	静电保护	- 5 -
6.	热特性	- 5 -
	电磁兼容性	
	工作参数	
9.	赛卓齿轮参数	10 -
10.	功能说明	11 -
11.	<i>封装信息</i>	16 -
12.	修订信息	17 -

1. 功能框图

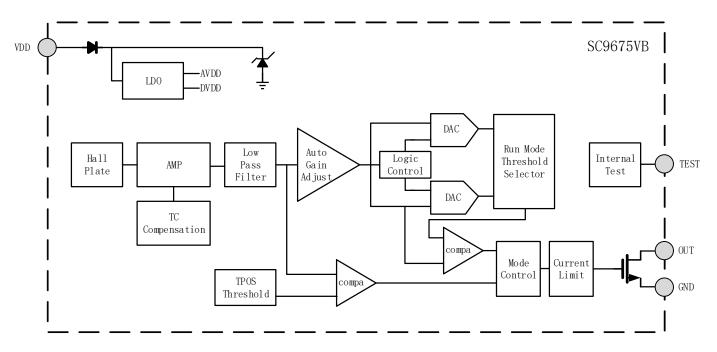
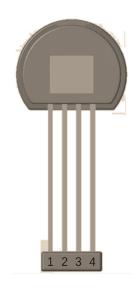



图 1.功能框图

2. 管脚定义

数量	名称	类型	说明
1	VCC	电源	电源电压 3.3V~24V
2	OUT	输出	开漏输出
3	TEST	测试脚	测试引脚建议连接至接地
4	GND	地	接地

3. 订购信息

型号	包装	封装	环境,T _A	打标
SC9675IM-P-XXXXXXX	卷带,	SIP-4M	-40℃至	9675
	每卷 500 件	(包含磁铁)	150	日期代码

*详情如下

型号	可编程选项					
至力	输出极性	校准模式	响应时间	翻转点		
SC9675IM-P-LRF00	L:	R:	F:	00:		
3C90/3IIVI-P-LRF00	对齿低	快速进入	快速下降沿	RP=70% OP=70		
CC0675IM D I DE01	L:	R:	F:	01:		
SC9675IM-P-LRF01	对齿低	快速进入	快速下降沿	RP=50% OP=50		
COCZEIM D I DE10	L:	R:	F:	10:		
SC9675IM-P-LRF10	对齿低	快速进入	快速下降沿	RP=60% OP=70		
SC9675IM-P-LRF11	L:	R:	F:	11:		
SC90/SIIVI-P-LRFTT	对齿低	快速进入	快速下降沿	RP=50% OP=60		
SC9675IM-P-HRF00	H:	R:	F:	00:		
5C9675IIVI-P-HRF00	对齿高	快速进入	快速下降沿	RP=70% OP=70		
SC9675IM-P-HRF01	H:	R:	F:	01:		
3C90/3IIVI-P-HRFUT	对齿高	快速进入	快速下降沿	RP=50% OP=50		
COCZEIM D HDC10	H:	R:	F:	10:		
SC9675IM-P-HRF10	对齿高	快速进入	快速下降沿	RP=60% OP=70		
SC9675IM-P-HRF11	H:	R:	F:	11:		
3090/31IVI-P-HRFTT	对齿高	快速进入	快速下降沿	RP=50% OP=60		

^{*}其他订货信息,请联系赛卓。

4. 极限参数

符号	参数	极图	单位	
13.3	., 5		最大	1 1
V_{DD}	电源电压	-13	30	V
V _{OUT}	输出电压	-0.5	30	V
I _{OUT} (sink)	输出电流	30	80	mA
T _A	工作环境温度	-40	150	$^{\circ}$
TJ	结温	-40	165	$^{\circ}$
T _{STG}	存储温度	-55	165	${\mathbb C}$

注:超过此处所列的范围可能会对设备造成永久性损坏。长期暴露在绝对最大额定条件下可能会影响设备的可靠性。

5. 静电保护

人体模型 (HBM) 测试标准: AEC-Q100-002

符号	参数	极限	单位	
付亏	●数 	最小	最大	半位
V ESD*	ESD 保护	-4	4	KV

^{*} 无任何保护电路的裸芯片性能。

6. 热特性

符号	参数	测试条件	评级	单位
R _θ JA	封装热阻	单层印刷电路板,铺铜仅限于焊盘	101	°C/W

7. 电磁兼容性

参考 ISO 7637-2 规范, EMC 测试电路参见图 2.

参数	符号	水平/典型值	现状
测试脉冲 1	.,	IV / -150V	С
测试脉冲 2a		IV / 55V	С
测试脉冲 2b		IV / 10V	В
测试脉冲 3a	V _{EMC}	IV / -220V	С
测试脉冲 3b		IV / 150V	С
测试脉冲 5		IV / 34V	Α

- 1. 状态 A 测试标准: 芯片输出无缺失, 无附加脉冲, 输出占空比和抖动在规范内。
- 2. 状态 B 测试标准: 芯片输出无缺失脉冲或附加脉冲。
- 3. 状态 C 测试标准:测试过程中,一个或多个参数超出规范,但测试结束后能自动恢复正常状态。

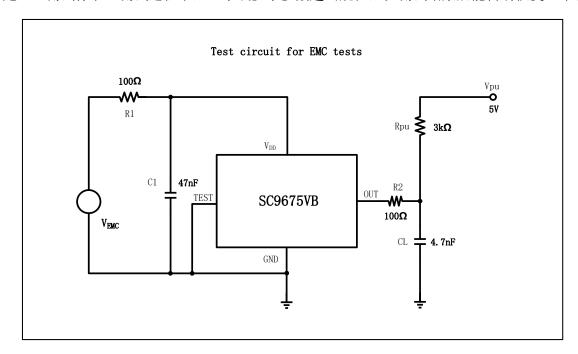


图 2.建议的 EMC 保护和应用电路

8. 工作参数

工作环境温度范围(-40℃ – 150℃),(VDD=3.3V - 24V,除非另有说明)

符号	参数	测试条件	最小	典型值	最大	単位
供电特性						
V_{DD}	工作电压	$T_J < T_{J (max)}$	3.3		24	٧
I _{DD}	工作电源电流	V _{DD} =3.3 至 24V	4.5	5.2	7.5	mA
V _{UVLO}	欠压锁定			2.7	3.3	٧
V _{Supply}	电源齐纳管电压	I _{DD} =30mA	28	33	40	٧
I _{Supply}	电源齐纳管电流	V _{SUPPLY} = 28V		6	8	mA
f _C	斩波频率		387	500	875	kHz
V _{ZTEST}	测试脚齐纳管电压	I _{TEST} =30mA	6	10	12	٧
t _{PO}	响应时间	$V_{DD} > V_{DD \ (\oplus \wedge \acute{u})} \ , \ f_{SIG} < 200 Hz$		0.4	1	ms
输出特性						
输出状态	LT 选项	对齿		低		٧
		对谷		高		٧
	HT 选项	对齿		高		٧
		对谷		低		٧
	输出饱和电压	I _{OUT} =10mA,输出状态=ON			180	mV
$V_{Q(SAT)}$		I _{ОUT} =15mA,输出状态=ON			270	mV
		I _{OUT} =20mA,输出状态=ON			350	mV
I _{QL}	输出漏电流	V _{PU} =24V,输出状态=ON			10	μΑ
louTLimit	输出限流	输出状态 = ON	30	50	60	mA
V _{ZOUT}	输出齐纳管电压	I _{OUT} =30mA	30	35	40	٧
t _r	上升时间	$R_{PU}=1k \Omega$, $C_{L}=4.7nF$, $V_{PU}=5 V$		10	11	us
		$R_{PU}=1k \Omega$, $C_{L}=4.7nF$, $V_{PU}=5 V$	1.5	1.6	2.3	us
t _f	下降时间	$R_{PU}=1k \Omega$, $C_{L}=4.7nF$, $V_{PU}=12V$	1.7	2.0	2.7	us
t _{f (OUT)}	下降时间随温度的变化	从 T _A =25℃到 40℃再到 150℃的最大 变化	-20	0	20	%
t _{d (OUT)}	延时	4KHz,输入信号到下降沿		18		us
t _{d (OUT)} 性能特性	延时	│4KHz,输入信号到下降沿		18		us

AG ^{1,2}	气隙范围, (IC 表面到目标表面)	保证开关功能,参考赛卓齿轮参数	0.5		2.8	mm
BW	模拟信号带宽	-3dB 截止频率		20		kHz
f _{SIG}	齿速	齿信号频率	0		8	kHz
CAL _{Initial}	初始校准	用于确定运行模式开关点电平的机械 下降沿数量		1	3	edge
CALTPORM	TPO 到运行模式的调整	从 TPOS 开关点电平过渡到运行模式开关点电平的机械下降沿数量			1	edge
B _{ST} ³	运行模式切换点	峰峰值百分比,基准是峰谷 参考赛卓齿轮参数	50		70	% _{pk-pk}
B _{HYS (int)}	内部磁滞	峰峰值信号的百分比		10		%
	最大允许信号衰减量	从 VPROC 最高峰值到最低峰值的 VPROC幅值降低,所有参数均在范围内			15	% _{pk-pk}
B _{reduce}		从 VPROC 最高峰值到最低峰值的 VPROC幅值降低;输出信号和其他参数 可能超出范围			25	% _{pk-pk}
Err _{RELR}	相外和冷棒度	初始校准后机械上升沿,齿轮速度 = 1000rpm,目标偏心 < 0.1mm		0.4	0.8	deg
Err _{RELF}	- 相对相位精度 	初始校准后机械下降沿,齿轮速度 = 1000rpm,目标偏心 < 0.1mm		0.5	1.0	deg

- 1. 实际气隙范围为 0.5~4mm,可保证芯片的 TPOS 功能,气隙超过 2.8mm 无法保证 Err_{RELF}。
- 2. 气隙参数适用于芯片与赛卓齿,安装方向参考赛卓测试条件。
- 3. 有 4 种翻转点模式,通常为 70%或 50%,详情请联系我们。

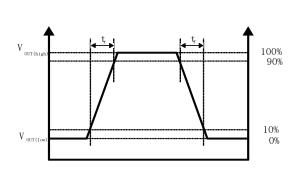
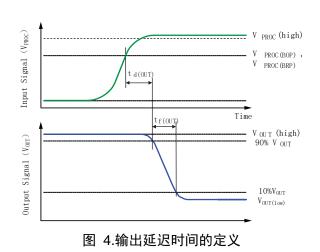



图 3.上升时间和下降时间

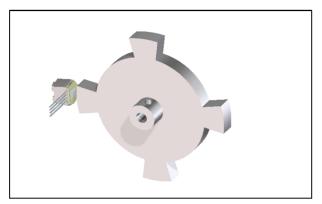


图 5.建议的应用场景

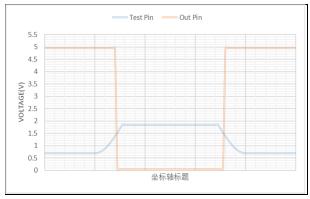


图 6.开关点的定义

图 7.最大允许信号减弱的定义

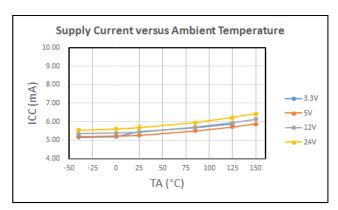


图 8.电源电流

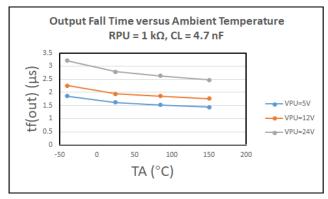


图 9.下降时间

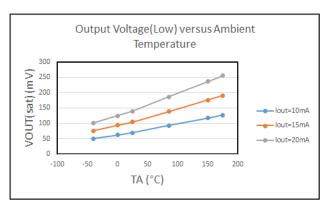


图 10.输出电压(饱和)

9. 赛卓齿轮参数

特征	符号	测试条件	典型值	单位	符号键
外径	Do	 齿轮最外表面的直径 	60	mm	
齿峰长度	l t	齿顶长度,从面对芯片表面方向 测量	11.78	mm	
齿谷长度	t _V	齿谷(齿槽)长度,从面对芯片 表面方向测量	23.6	mm	
齿深度	h _t		5	mm	赛卓齿轮
材料		45#			, , , , , ,

10.功能说明

10.1 内部电路

该芯片包含一个自校准霍尔效应集成电路,其中包括一个霍尔元件、一个温度补偿放大器和偏移消除电路。除此之外还包含一个稳压器,可在工作电压范围内抑制电源噪声。霍尔元件和其他电路通过专有的 BiCMOS 工艺集成在同一个衬底上。因为有稳定的放大器设计和偏移抑制电路,温度变化对该器件的影响不大。内置斩波电路的霍尔芯片,可用于测量磁场的强度,并输出代表目标特征的电信号。

10.2 霍尔技术

SC9675IM-P 内置一个 4 引脚框架的霍尔效应传感芯片和一个特别设计的孔洞沙发座磁铁(精确安装以保证磁场集中性及理想的零磁场特性)。霍尔芯片里的有斩波功能的霍尔元件,用于测量铁磁性物体通过时产生的磁场变化。如图 11 所示。利用齿峰和齿谷产生的磁场差异,可以产生代表不同目标特征的数字输出信号。

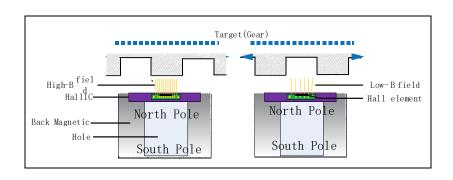


图 11. 芯片对齿峰和对齿谷的应用

10.3 输出极性 (LT/HT 选项)

该芯片输出信号,VOUT,是目标齿轮机械特征的数字表示,如图 12 所示。客户可以选择输出信号的极性。选择的极性对应芯片表面面对齿峰的输出特性(相反极性将对应芯片表面面对齿谷的输出特性)。当齿峰与芯片表面相对时,LT 选项将 VOUT 设置为低电平,HT 选项将 VOUT 设置为高电平。这种极性选择适用于芯片的整个工作过程。这种易用性极大地减低了应用的设计时间和额外的装配成本。

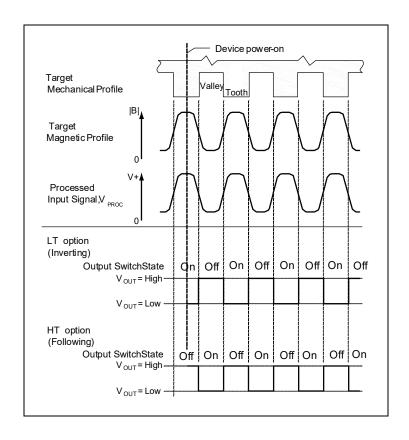


图 12. 对齿状态与输出极性

10.4 自动增益控制 (AGC)

自动增益控制 (AGC) 功能可确保 SC9675IM-P 的开关阈值不受有效气隙(霍尔元件与齿轮表面之间的 距离)变化的影响。AGC 是赛卓独特设计的自校准电路,对感应到的磁场强度进行归一化处理,使内部信号 始终处于最佳工作区间。

AGC 在每次上电的初始校准阶段生效。芯片测量齿峰和齿峰之间的磁场变化,然后调整芯片的增益,使内部信号 V_{PROC} 理想化,以适应工作磁场范围 B_{SIC} 内的任何输入信号幅度。AGC 参考内部信号 V_{PROC} ,在初始校准阶段结束时,AGC 结果将被锁定,在芯片保持接通电源的情况下不会重新调整。

10.5 电源供电保护

SC9675IM-P 提供了免受电源异常影响的保护功能。

10.6 欠压锁定

当电源电压低于欠压锁定电平时,芯片输出状态变为关。在电源电压恢复到正常工作范围之前,芯片一直处于该状态。在电源电压恢复之前,磁场变化不会产生任何影响。此功能可以防止欠压条件下芯片输出错误信号。

10.7 EMC

SC9675IM-P 内置稳压器,可以在较宽的电源电压范围内工作。使用非稳压电源供电的应用,可在外部添加瞬态保护电路。使用稳压电源供电的应用,可能依然需要 EMI 和 RFI 保护。有关 EMC 规范合规性的信息,请联系赛卓。

10.8 工作模式

该芯片有三种工作模式: TPOS、校准和运行。TPOS 和校准在上电后同时开始。TPOS 即时产生芯片输出,在校准期间,控制输出状态。校准完成后,开始在运行模式下正常工作。

10.9 TPOS (真实上电状态)

上电(TPO)后,芯片立即产生极性选择对应的输出电平,它通过比较当前的磁场强度 B_{APP} 与 TPOS 阈值电平得出。TPOS 阈值电平是一个内部阈值,用于在 TPOS 运行期间(从开机到初始校准阶段结束)区分齿峰和齿谷。如果 B_{APP} 小于阈值,则该位置被认定为齿谷;如果 B_{APP} 大于阈值,则该位置被认定为齿峰。

10.10 校准模式

上电后校准模式开始(与 TPOS 运行同时)。校准模式分两个阶段进行:初始校准阶段,紧接着是从 TPOS 到运行模式的过渡阶段。第二个校准阶段结束后,立即开始运行模式。

在校准模式下,检测和评估应用磁场 B_{APP} 的工作范围,然后调整 SC9675IM-P 内部工作电路,以实现最佳输出切换。由于 SC9675IM-P 使用内部磁场基准线,因此校准可以快速完成,且无需经过一个完整齿。

10.11 初始校准阶段

在初始校准阶段,TPOS 控制芯片输出,同时校准开始。在此阶段,峰值检测 DAC 获取应用磁场强度。根据这些结果,自动增益控制 (AGC) 功能会计算出运行模式归一化的工作区间。这一阶段将被最小化,以便尽快切换到运行模式的阈值。

10.12 从 TPOS 到运行模式的过渡阶段

此阶段开始时,TPOS 操作终止,在整个过程中,芯片自动调节输出翻转阈值,从原来的预设电平调整到运行模式的阈值。这一过程发生在一个齿上,即可从 TPOS 切换到运行模式。

10.13 运行模式

校准模式结束后立即进入运行模式。在运行模式下,根据感应到的应用磁场 B_{APP} 动态建立翻转点。为确定翻转点, B_{APP} 通过 AGC 功能进行归一化处理并生成内部信号 V_{PROC} 。两个峰值检测 DAC 跟踪 V_{PROC} 波形,输出翻转点按两个 DAC 所保持的比例确定。因为翻转点是按峰峰值信号的比列动态确定,所以基准线偏移产生的影响最小。

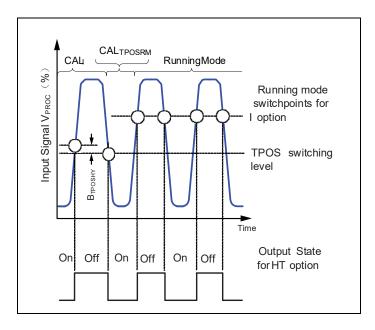


图 13.校准模式波形

10.14 运行模式翻转点

用于定义运行模式翻转点的阈值以峰峰值 V_{PROC} 的比例计算得出。如图 14 所示,该百分比从最小 V_{PROC} (高)为基准,该值对应最大气隙,即最内陷的齿。对于 SC9675IM-P,翻转点约为磁场信号峰峰值的 70%或 50%。该翻转点与齿的边缘紧密对应,从而在不同气隙条件下获得最佳的相位精度。

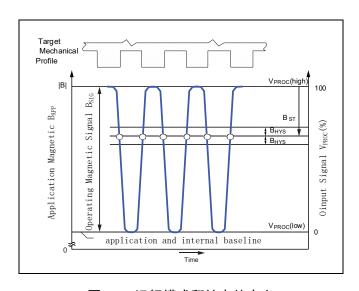


图 14. 运行模式翻转点的定义

10.15 运行模式迟滞

SC9675IM-P 内部设计了迟滞功能,在上升沿和下降沿上都以同一个点进行翻转。如图 15 所示,当遇到 异常齿时,内部设定的磁滞阈值可防止误翻转。

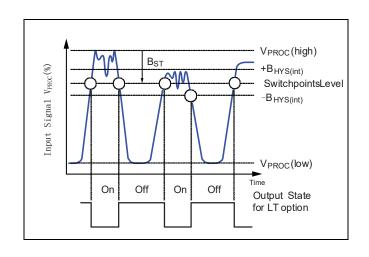


图 15. 运行模式在异常峰值时切换

11.封装信息

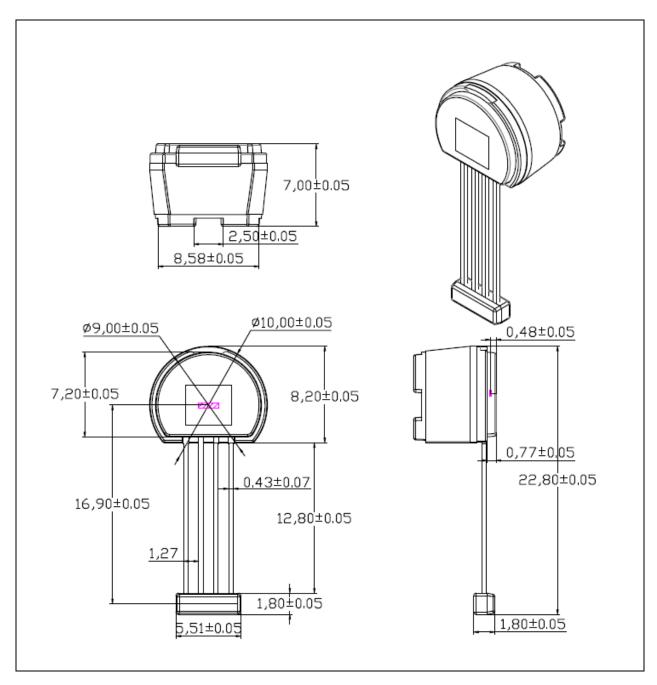


图 16.封装信息

12.修订信息

版本	更新日期	备注
A0	2022-08-30	初始化版本
A1	2023-02-09	更新二维尺寸
A2	2023-04-13	更新购买信息和一些通知
А3	2023-05-22	更新订单信息
A4	2023-12-27	正式发布