USB 2.0 + Audio Switch

The NL3S22AH/NL3S22UH is a double-pole/double-throw (DPDT) analog switch for routing high speed differential data and audio. The differential channels are compliant with High Speed USB 2.0, Full Speed USB 1.1, Low Speed USB 1.0 and any generic UART protocol. The multi-purpose audio path is capable of passing signals with negative voltages as low as 3 V below ground and features shunt resistors to reduce Pop and Click noise in the audio system.

For the NL3S22AH, the audio path (AUDP/AUDN) will be selected with SEL=0 with the device enabled (EN = 1). For the NL3S22UH, the high speed data path (HDP/HDN) will be selected with SEL=0 with the device enabled (EN = 1).

Features

- V_{CC} Range: 2.7 V to 3.7 V
- Control Pins Compatible with 1.8 V Interfaces
- I_{CC}: 60 µA (Typ)
- ESD Performance: 2 kV HBM
- Available in 1.4 mm x 1.8 mm UQFN10
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

High Speed Data Path

- Input Signal Range: 0 V to 4.5 V
- R_{DS(on}): 5.4 Ω (Typ)
- C_{ON}: 8.7 pF (Typ)
- up to 480 Mbps NTATIVE • Data Rate: USB 2.0-Compliant -
- Bandwidth: >811 MHz

Audio Path

- Input Signal Range: -3.0 V to 3
- R_{DSON}: 0.56 Ω (Typ)
- R_{ON(FLAT)}: 0.004 Ω (Typ)
- THD+N:

 $-113 \text{ dB} (\text{R}_{\text{L}} = 32 \Omega / \text{V}_{\text{IS}} = 1.0 \text{ V}_{\text{RMS}})$ $-109 \text{ dB} (R_{\text{L}} =$ $16 \Omega / V_{IS} = 0.4 V_{RMS}$

Applications

- Smartphones
- Tablets
- USB 2.0 Hosts/Peripherals
- Audio / High-Speeds Data Switching
- USB Type-C Switching

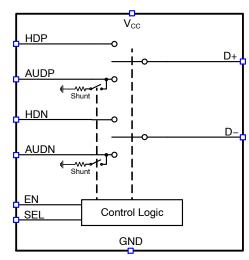
ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

М

AY for NL3S22AHMUTAG DW for NL3S22UHMUTAG = Date Code = Pb-Free Device


(Note: Microdot may be in either location)

ORDERING INFORMATION

1	Device	Package	Shipping [†]
2	NL3S22AHMUTAG	UQFN10 (Pb-Free)	3000 / Tape & Reel
	NL3S22UHMUTAG	UQFN10 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


1

FUNCTION TABLE

Figure 1. Block Diagram							
	SI	EL					
EN	NL3S22AH	NL3S22UH	Shunt Status	D+/D- Function			
0	Х	Х	ON CO	No Connect (Power Down)			
1	0	1	OFF	AUDP/AUDN			
1	1	0	ON O	HDP/HDN			

PIN DESCRIPTION

Pin Name	Pin	Description
HDP	1	High Speed Differential Data (+)
HDN	2	High Speed Differential Data (-)
GND	3	Ground
AUDN	4	Audio Signal (-)
SEL	5	Function Select
D-	6	Audio/Data Common I/O (-)
D+	7	Audio/Data Common I/O (+)
EN	8	Chip Enable
AUDP	9	Audio Signal (+)
V _{CC}	10	Power Supply

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.5 to +4.2	V
V _{IS}	Analog Input/Output Voltage HDP, HDN	-0.5 to +5.5	V
	AUDP, AUDN	-3.5 to +4.2	
	D+, D-	-3.5 to +5.5	
V _{IN}	Digital Control Pin Voltage on EN, SEL	–0.5 to V _{CC} + 0.5	V
Ts	Storage Temperature	–55 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
MSL	Moisture Sensitivity (Note 1)	Level 1	
I _{LU}	Latchup Current (Note 2)	±100	mA
ESD	ESD Protection (Note 3) Human Body Model Charged Device Model	2000 2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality FOR NEW DE should not be assumed, damage may occur and reliability may be affected.

- 1. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.
- 2. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78.
- This device series contains ESD protection and passes the following tests: 3. Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22-A114 for all pins.

RECOMMENDED OPERATING CONDITIONS

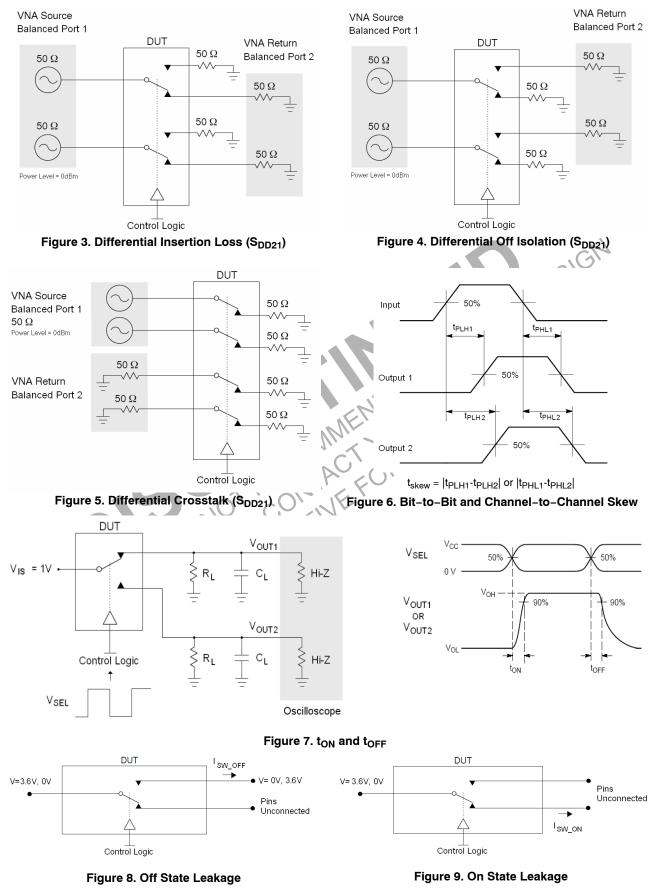
Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	2.7	3.7	V
V _{IS}	Switch Input / Output Voltage (Note 4) HDP, HDN	1×00	4.5	V
	AUDP, AUDN	-3.0	3.0	
	D+, D-	-3.0	4.5	
V _{IN}	Digital Control Input Voltage	GND	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C

4. If the audio channel is not in use, it is recommended that no signals are applied on the audio inputs AUDN and AUDP.

THIS DEVICE PLEASEN

DC ELECTRICAL CHARACTERISTICS (T	Typical values are at V_{CC} = +3.6 V and T_A	$= +25^{\circ}C$, unless otherwise specified)
----------------------------------	---	--

				–40 °C to 85 °C			
Symbol	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
POWER SU	PPLY	·					
I _{CC}	Supply Current	EN = 1, I _{IS} = 0 mA	3.6	-	60	100	μA
		EN = 0 (Power Down)		_	_	1.0	
Control Log	gic (EN, SEL)	·					
V _{IH}	Input High Voltage		3.6	1.4	-	-	V
			2.7	1.3	-	-	
VIL	Input Low Voltage		3.6	_	_	0.4	V
			2.7	_	_	0.4	
VIHYS	Input Hysteresis		2.7 – 3.6	-	250	-	mV
I _{IN}	Leakage Current		2.7 – 3.6		-	±100	nA
AUDIO SWI	TCH (AUDP/AUDN ↔ D+/D–)					~\O'	
R _{ON}	ON-Resistance	V_{IS} = –3.0 V to 3.0 V, I_{IS} = 50 mA	3.0		0.56	0.73	Ω
ΔR_{ON}	ON-Resistance Matching Between Channels	$V_{\rm IS}$ = –3.0 V to 3.0 V, $I_{\rm IS}$ = 50 mA	3.0	-	0.07	_	Ω
R _{FLAT(ON)}	ON Resistance Flatness	$V_{IS} = -3.0$ V to 3.0 V, $I_{IS} = 50$ mA	3.0	1-	0.004	_	Ω
R _{SH}	Shunt Resistance		3.6	in.	110	200	Ω
I _{SW(OFF)}	OFF-State Leakage	EN = 0, V _{IS} = 3.0 V at D+/D-	3.6	5-1	<i>(</i> 0,	±200	nA
I _{SW(ON)}	ON-State Leakage	$V_{IS} = 0 V$ to 3.0 at D+/D-, AUDP = AUDP = open	3.6	2NAA	±2.2	±3.0	μA
DATA SWIT	CH (HDP/HDN ↔ D+/D–)	NN-10	03,00				
R _{ON}	ON-Resistance	$V_{IS} = 0 V$ to 1.7 V, $I_{IS} = 15 \text{ mA}$	3.0	-	5.4	6.63	Ω
ΔR_{ON}	ON-Resistance Matching Between Channels	$V_{IS} = 0.7$ to 1.7 V, $I_{IS} = 15$ mA	3.0	-	0.2	_	Ω
R _{FLAT(ON)}	ON Resistance Flatness	$V_{IS} = 0 \text{ V to } 1.7 \text{ V}, I_{IS} = 15 \text{ mA}$	3.0	-	0.002	_	Ω
I _{SW(OFF)}	OFF-State Leakage	EN = 0, V _{IS} = 0 V to 3.6 V	3.6	_	-	±200	nA
	ON-State Leakage	V _{IS} = 0 V to 3.6 V	3.6	-	-	±200	nA


AC ELECTRICAL CHARACTERISTICS (Typical values are at V_{CC} = +3.6 V and T_A = +25°C)

				–40 °C to 85 °C		°C	
Symbol	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
AUDIO SW	ITCH (AUDP/AUDN ↔ D+/D-)						
THD	Audio THD	$\label{eq:stars} \begin{array}{l} f=20 \text{ Hz to } 20 \text{ Hz},\\ V_{IS}=1.0 \text{ V}_{RMS}, \text{ DC Bias}=0 \text{ V},\\ R_L=32 \ \Omega\\ V_{IS}=0.4 \text{ V}_{RMS}, \text{ DC Bias}=0 \text{ V},\\ R_L=16 \ \Omega \end{array}$	2.7 – 3.6	_	-113 -109	-	dB
PSRR	Power Supply Ripple Rejection	From V _{CC} unto AUDP/AUDN, f = 217 Hz, R _L = 16 Ω	2.7 – 3.6	-	106	_	dB
DATA SWI1	rch (HDP/HDN ↔ D+/D–)						
C _{ON}	Equivalent ON-Capacitance	Switch ON, f = 1 MHz	3.6	-	8.7	10	pF
C _{OFF}	Equivalent OFF-Capacitance	Switch OFF, f = 1 MHz	3.6		1.8		pF
D _{IL}	Differential Insertion	f = 10 MHz	2.7 – 3.6		-0.5	210	dB
	Loss	f = 800 MHz	2.7 – 3.6	_	-2.8	-	
D _{ISO}	Differential Off-Isolation	f = 10 MHz	2.7 – 3.6	-	-54	_	dB
		f = 800 MHz	2.7 – 3.6	NE	-25	_	
D _{CTK}	Differential Crosstalk	f = 10 MHz	2.7 – 3.6		-62	-	dB
		f = 800 MHz	2.7 - 3.6	6-	-28	_	
PSRR	Power Supply Ripple Rejection	From V _{CC} unto D+/D-, f = 217 Hz, R _L = 50 Ω	2.7 – 3.6	MA	111	_	dB
DYNAMIC 1	TIMING	ME'O	<u>0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0</u>				
t _{PD}	Propagation Delay (Notes 5 and 6)	$V_{NOn} \text{ or } V_{NCn} = 0V, R_L = 50 \Omega$	2.7-3.6	-	0.25	-	ns
t _{EN}	Enable Time, EN to HDx EN to AUDx	$V_{IS} = 1 V, R_L = 50 \Omega, C_L = 7 pF$ (fixture only)	2.7 – 3.6		2.1 5.1		μs
t _{DIS}	Disable Time, EN to HDx EN to AUDx	$V_{IS} = 1 V$, $R_L = 50 \Omega$, $C_L = 7 pF$ (fixture only)	2.7 – 3.6	-	157 53		ns
t _{ON}	Turn-On Time, SEL to HDx SEL to AUDx	$V_{1S} = 1 V$, $R_L = 50 \Omega$, $C_L = 7 pF$ (fixture only)	2.7 – 3.6	-	0.3 3.4	-	μs
toff	Turn-Off Time, SEL to HDx SEL to AUDx	V_{IS} = 1 V, R_L = 50 Ω , C_L = 7 pF (fixture only)	2.7 – 3.6	-	157 44		ns
t _{INIT}	Initialization Time (Notes 5 and 7), V_{CC} to D+/D–	V_{IS} = 1 V, R_{L} = 50 Ω , C_{L} = 7 pF (fixture only)	2.7 – 3.6	150	-	_	μs
t _{sk(b-b)}	Bit to bit skew	Within the same differential channel	2.7 – 3.6	-	5	-	ps
t _{sk(ch-ch)}	Channel to channel skew	Maximum skew between all chan- nels	2.7 – 3.6	-	5	-	ps

 Guaranteed by design.
No other delays than the RC network formed by the load resistance and the load capacitance of the switch are added on the bus. For a 10 pF load, this delay is 5 ns which is much smaller than rise and fall time of typical driving systems. Propagation delays on the bus are determined by the driving circuit on the driving side and its interactions with the load of the driven side.

7. Wait time required after V_{CC} power-up to operating level before data access is valid.

PARAMETER MEASUREMENT INFORMATION

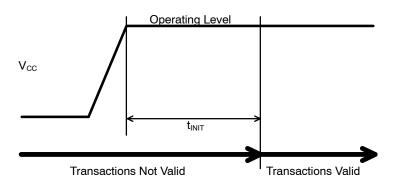
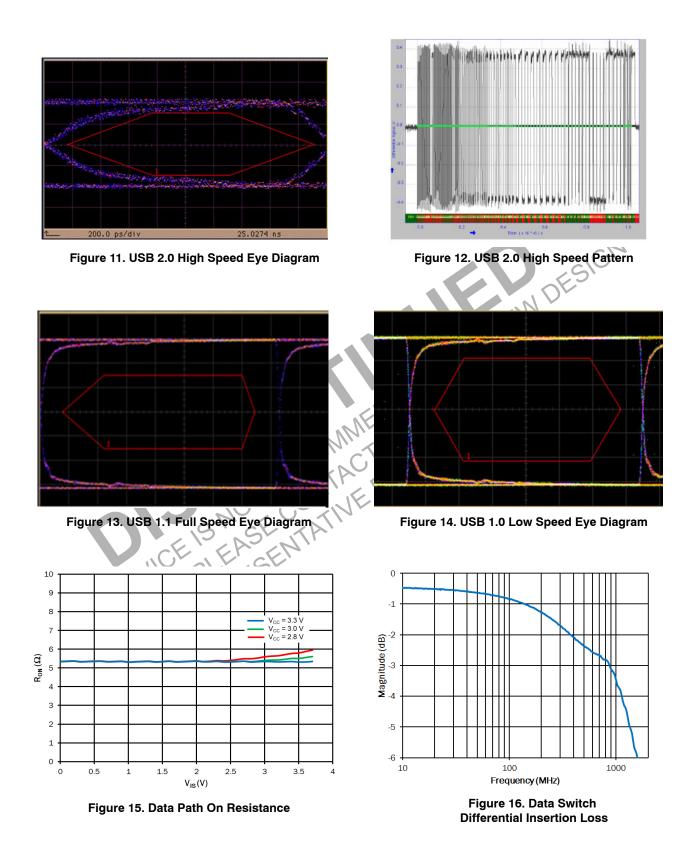
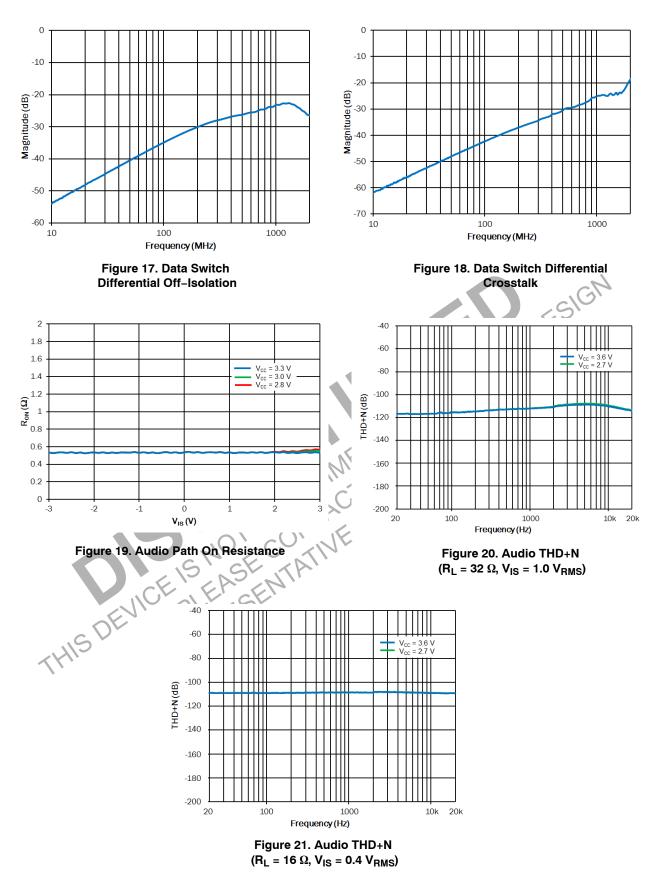
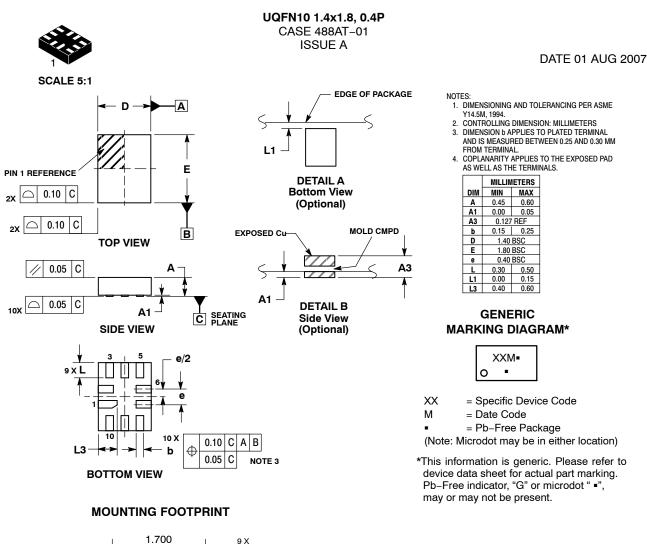
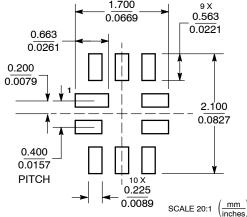




Figure 10. t_{INIT}, Initialization Time




TYPICAL OPERATING CHARACTERISTICS

DOCUMENT NUMBER:	98AON22493D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	10 PIN UQFN, 1.4 X 1.8, 0.4	10 PIN UQFN, 1.4 X 1.8, 0.4P					

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>