

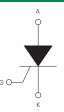
S6002xS

Main Features

Symbol	Value	Unit
I _{T(RMS)}	2	А
V _{DRM} /V _{RRM}	600	V
I _{GT}	200	μА

Applications

The S6002xS is specifically designed for capacitor discharge application such as high-power gas flame ignition.


Description

The S6002xS offers high very high di/dt capability through small die planar construction design. It is glass-passivated to ensure long term reliability and parametric stability.

Features

- Surge capability > 25Amps
- Blocking voltage (V_{DRM}/V_{RRM}) capability up to 600V
- High di/dt capability of 500A/µs
- Improved turn-off time (t_q) < 55 µsec.
- Sensitive gate for direct microprocessor interface
- Thru hole and surface mount packages
- RoHS compliant and Halogen-Free

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit		
1	RMS on-state current	TO-92	$T_{\rm C} = 65^{\circ}{\rm C}$	2	А
I _{T(RMS)}	(full sine wave)	SOT-223	$T_{\rm C} = 95^{\circ}{\rm C}$	2	A
1	Average on state surrent	TO-92	$T_{c} = 65^{\circ}C$	1.2	А
T(AV)	Average on-state current	SOT-223	$T_{\rm C} = 95^{\circ}{\rm C}$	1.2	A
	Non repetitive surge peak on-state current		F = 50 Hz	22.5	А
I _{TSM}	(Single cycle, T _J initial = 25°C)	SOT-223	F = 60 Hz	25.0	A
l²t	I²t Value for fusing	t _p = 10 ms	F = 50 Hz	2.5	A ² s
di/dt	Critical rate of rise of on-state current IG = 10mA	TO-92 SOT-223	T _J = 25°C	500	A/µs
I _{GM}	Peak gate current t _p = 20 μs		T _J = 125°C	1.0	А
P _{G(AV)}	Average gate power dissipation $T_J = 125^{\circ}C$		0.2	W	
T _{stg}	Storage junction temperature range			-40 to 150	°C
T _J	Operating junction temperature range			-40 to 125	°C

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

0 1 1	Description - Test Countil	T . O . I''	Val	11.5	
Symbol	Description	Test Conditions	Min	Max	Unit
I _{GT}	DC Gate Trigger Current	V _D = 6V	20	200	μΑ
$V_{\rm GT}$	DC Gate Trigger Voltage	$R_L = 100 \Omega$	_	0.8	V
V_{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10 \mu A$	5	_	V
I _H	Holding Current	$R_{GK} = 1 k\Omega$	_	5	mA
V_{GD}	Gate Non-Trigger Voltage	$V_{D} = V_{DRM}$ $R_{GK} = 1 \text{ k}\Omega$ $T_{J} = 125 \text{ °C}$	0.2	-	V
dv/dt	Critical Rate-of-Rise of Off-State Voltage	$T_J = 125^{\circ}\text{C}$ $V_D = 67\% \ V_{DRM}$ Exponential Waveform $R_{GK} = 1 \ k\Omega$	25	_	V/µs
t _q	Turn-Off Time	I _τ =0.5A	_	55	μs
t _{gt}	Turn-On Time	I _G = 10mA PW = 15μsec I _T = 3.0A (pk)		3	μs

Static Characteristics (T_J = 25°C, unless otherwise specified)

Cumphal	Description	Test Conditions	Value		Unit
Symbol		lest Conditions	Min	Max	Onit
V _{TM}	Peak On-State Voltage	$I_{TM} = 3A(pk), T_p = 380\mu s$	_	1.5	V
1 /1	Off-State Current, Peak Repetitive	$T_J = 25^{\circ}\text{C} @V_D = V_{DRM}$ $R_{GK} = 1 \text{ k}\Omega$	_	5	μΑ
I _{DRM} / I _{RRM}		$T_J = 125^{\circ}C @V_D = V_{DRM}$ $R_{GK} = 1 k\Omega$	_	500	μΑ

Thermal Resistances

Symbol	Parameter			Value	Unit
D.	lunation to accordance	1 1 5 1	TO-92	30	0000
$R_{\theta(JC)}$	Junction to case (AC)	$I_{T} = 1.5A_{(RMS)}^{1}$	SOT-223	15	°C/W
		1 150 1	TO-92	160	°C / / /
$H_{\Theta(J-A)}$	Junction to ambient	$I_{T} = 1.5A_{(RMS)}^{1}$	SOT-223	60	°C/W

 $^{^{\}mbox{\tiny 1}}$ 60Hz AC resistive load condition, 100% conduction.

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

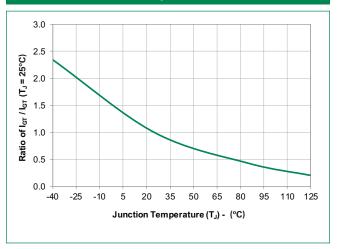


Figure 2: Normalized DC Holding Current vs. Junction Temperature

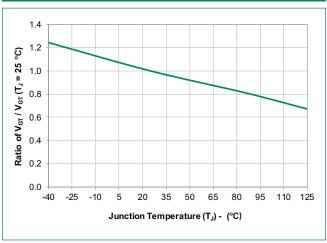


Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature

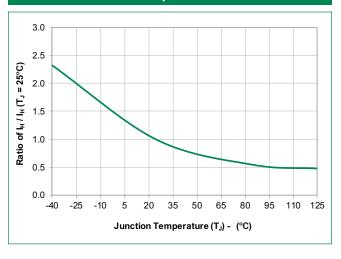


Figure 4: On-State Current vs. On-State Voltage (Typical)

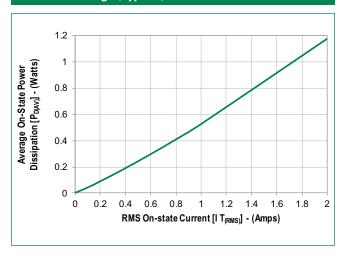


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

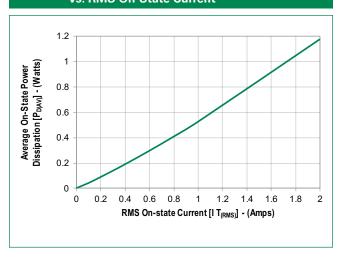
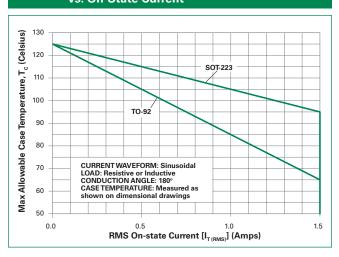
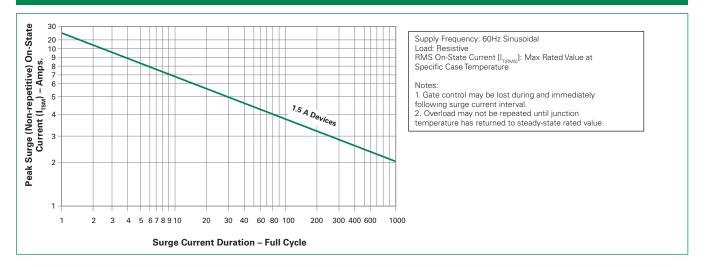




Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Figure 7: Surge Peak On-State Current vs. Number of Cycles

Figure 8: Peak Repetitive Capacitor Discharge Current

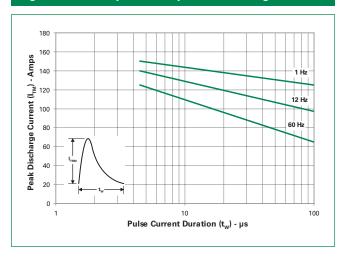
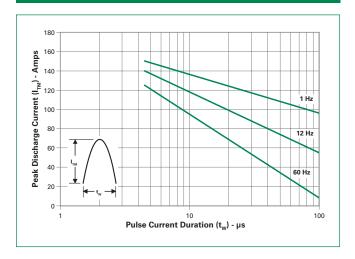
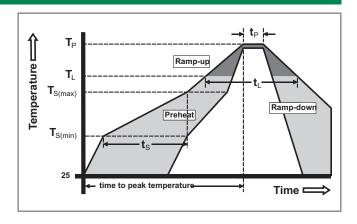




Figure 9: Peak Repetitive Sinusoidal Pulse Current

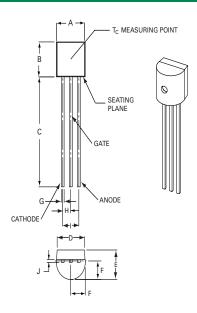
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 - 180 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
hellow	-Time (min to max) (t _s)	60 - 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 - 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

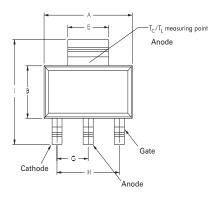
Terminal Finish	100% Matte Tin-plated.	
Body Material	UL Recognized compound meeting flammability rating V-0.	
Lead Material	Copper Alloy	

Design Considerations

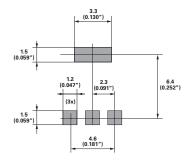

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

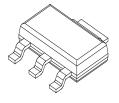
Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 1000 cycles; -55°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

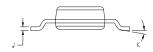


Dimensions — TO-92 (E Package)



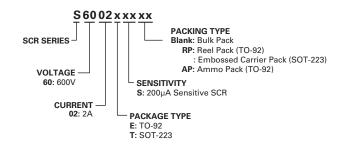
D:	Inc	Inches		neters
Dimensions	Min	Max	Min	Max
А	0.175	0.205	4.450	5.200
В	0.170	0.210	4.320	5.330
С	0.500	_	12.700	_
D	0.135	_	3.430	_
Е	0.125	0.165	3.180	4.190
F	0.080	0.105	2.040	2.660
G	0.016	0.021	0.407	0.533
Н	0.045	0.055	1.150	1.390
ı	0.095	0.105	2.420	2.660
J	0.015	0.020	0.380	0.500


Dimensions – SOT-223

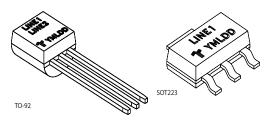


Dimensions in Millimeters (Inches)

Dimensions		Inches		IV	lillimete	rs
Dimensions	Min	Тур	Max	Min	Тур	Max
А	0.248	0.256	0.264	6.30	6.50	6.70
В	0.130	0.138	0.146	3.30	3.50	3.70
С	_	_	0.071	_	_	1.80
D	0.001	_	0.004	0.02	_	0.10
Е	0.114	0.118	0.124	2.90	3.00	3.15
F	0.024	0.027	0.034	0.60	0.70	0.85
G	_	0.090	_	_	2.30	_
Н	_	0.181	_	_	4.60	_
1	0.264	0.276	0.287	6.70	7.00	7.30
J	0.009	0.010	0.014	0.24	0.26	0.35
K	10° MAX					

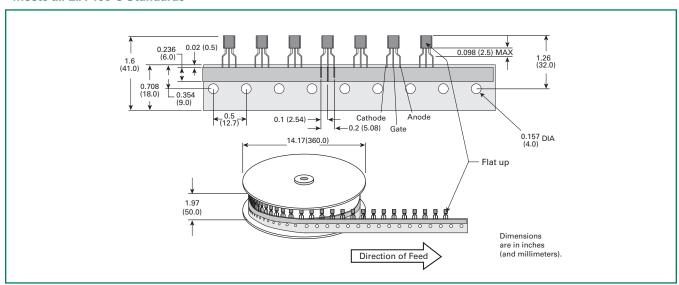

Product Selector

Part Number	Voltage 600V	Gate Sensitivity	Package
S6002ES	X	200μΑ	TO92
S6002TS	X	200μΑ	SOT223


Packing Options

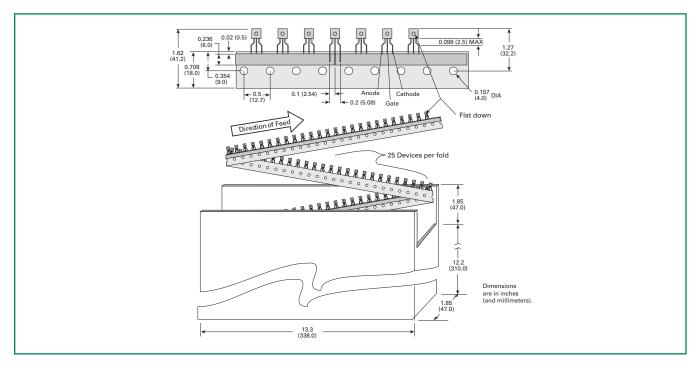
Part Number	Marking	Weight	Packing Mode	Base Quantity
S6002ES	S6002ES	0.217g	Bulk	2500
SS6002ESAP	S6002ES	0.217g	Ammo Pack	2000
S6002ESRP	S6002ES	0.217g	Tape & Reel	2000
S6002TSRP	S6002TS	0.120g	Tape & Reel	1000

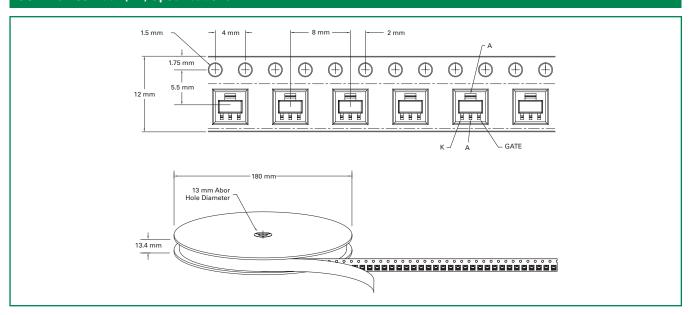
Part Numbering System


Part Marking System

Line 1 = Littelfuse Part Number
Line 2 = continuation...Littelfuse Part Number
Y = Last Digit of Calendar Year
M = Letter Month Code (A-L for Jan-Dec)
L = Location Code
DD = Calendar Date

TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications


Meets all EIA-468-C Standards



TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

SOT-223 Reel Pack (RP) Specifications

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.