

Wideband Operational Amplifier

FEATURES

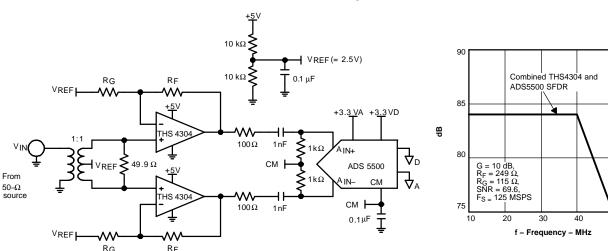
Wide Bandwidth: 3 GHz
 High Slew Rate: 830 V/μs

Low Voltage Noise: 2.4 nV/√Hz

Single Supply: 5 V, 3 VQuiescent Current: 18 mA

APPLICATIONS

- Active Filter
- ADC Driver
- Ultrasound
- Gamma Camera
- RF/Telecom

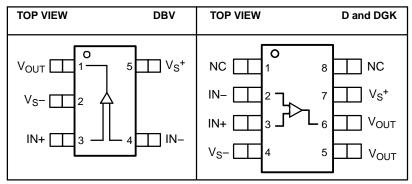

DESCRIPTION

The THS4304 is a wideband, voltage-feedback operational amplifier designed for use in high-speed analog signal-processing chains operating with a single 5-V power supply. Developed in the BiCom3 silicon germanium process technology, the THS4304 offers best-in-class performance using a single 5-V supply as opposed to previous generations of operational amplifiers requiring ±5-V supplies.

The THS4304 is a traditional voltage-feedback topology that provides the following benefits: balanced inputs, low offset voltage and offset current, low offset drift, high common mode and power supply rejection ratio.

The THS4304 is offered in 8-pin MSOP package (DGK), the 8-pin SOIC package (D), and the space-saving 5-pin SOT-23 package (DBV).

DIFFERENTIAL ADC DRIVE


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

PINOUT DRAWING

NOTE: NC indicates there is no internal connection to these pins.

PACKAGING / ORDERING INFORMATION

PACKAGED DEVICES	PACKAGE TYPE	PACKAGE MARKINGS	TRANSPORT MEDIA, QUANTITY
THS4304DBVT	SOT-23-5	AKW	Tape and Reel, 250
THS4304DBVR	301-23-3	ANV	Tape and Reel, 3000
THS4304D	SOIC-8		Rails, 75
THS4304DR	50IC-6	_	Tape and Reel, 2500
THS4304DGK	MSOP-8	AKU	Rails, 100
THS4304DGKR	IVIOUP-0	ANU	Tape and Reel, 2500

DISSIPATION RATINGS

PACKAGE	θЈС	θ_{JA}	POWER RATING ⁽²⁾			
	(°C/M)	(°C/W) ⁽¹⁾	T _A ≤ 25°C	T _A = 85°C		
DBV (5)	55	255.4	391 mW	156 mW		
D (8)	38.3	97.5	1.02 W	410 mW		
DGK (8)	71.5	180.8	553 mW	221 mW		

⁽¹⁾ This data was taken using the JEDEC standard High-K test PCB.

⁽²⁾ Power rating determined with a junction temperature of 125°C. This is the point where distortion starts to substantially increase. Thermal management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance and long-term reliability.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			UNIT						
Vs	Supply voltage		+6.0 V						
VI	Input voltage	±V _S							
Io	Output current	Output current							
V_{ID}	Differential input	±2 V							
	Continuous power	See Dissipation Rating Table							
_	Maximum junctio	150°C							
T_J	Operating free-ai	r temperature range, continuous operation, long-term reliability ⁽²⁾	125°C						
T _{stg}	Storage tempera	ture range	−65°C to 150°C						
	Lead temperature	300°C							
		НВМ	1600 V						
	ESD Ratings	CDM	1000 V						
		MM	100 V						

⁽¹⁾ The absolute maximum ratings under any condition is limited by the constraints of the silicon process. Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply valtage ()/ and \/)	Dual supply	±1.35	±2.5	\/
Supply voltage, (V _{S+} and V _{S-})	Single supply	2.7	5	V
Input common-mode voltage rang	V _S 0.2	V _{S+} + 0.2	V	

⁽²⁾ The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may result in reduced reliability and/or lifetime of the device.

ELECTRICAL CHARACTERISTICS

Specifications: V $_{S}$ = 5 V: R $_{F}$ = 249 $\Omega,$ R $_{L}$ = 100 $\Omega,$ and G = +2 unless otherwise noted

		TYP	TYP OVER TEMPERATURE						
PARAMETER	CON	CONDITIONS		25°C	0°C to 70°C	–40°C to 85°C	UNITS	MIN/ MAX	TEST LEVEL ⁽¹⁾
AC PERFORMANCE					•				
	G = +1, V _O = 1	00 mVpp	3				GHz	Тур	С
Oscall O'secal Decaded dile	G = +2, V _O = 1	1				GHz	Тур	С	
Small-Signal Bandwidth	G = +5, V _O = 1	187				MHz	Тур	С	
	G = +10, V _O =	100 mVpp	87				MHz	Тур	С
Gain Bandwidth Product	G >+10		870				MHz	Тур	С
0.1-dB Flat Bandwidth	$G= +2, V_O = 10$ $C_F = 0.5 pF$	00 mVpp,	300				MHz	Тур	С
Large-Signal Bandwidth	$G = +2, V_O = 2$	V _{PP}	240				MHz	Тур	С
Ol D-1-	$G = +2, V_O = 1$	-V Step	830				V/μs	Тур	С
Slew Rate	$G = +2, V_O = 2$	-V Step	790				V/µs	Тур	С
Settling Time to 1%	$G = -2, V_0 = 2$	-V Step	4.5				ns	Тур	С
Settling Time to 0.1%	$G = -2, V_O = 2$	-V Step	7.5				ns	Тур	С
Settling Time to 0.01%	$G = -2, V_O = 2$	-V Step	35				ns	Тур	С
Rise / Fall Times	$G = +2, V_O = 2$	-V Step	2.5				ns	Тур	С
Harmonic Distortion	•				•	•			
On any difference of a Distantian		R _L = 100 Ω	-84				dBc	Тур	С
Second Harmonic Distortion	G = +2,	$R_L = 1 \text{ k}\Omega$	-95				dBc	Тур	С
Third Harmonic Distortion	$V_O = 2 V_{PP},$ f = 10 MHz	R _L = 100 Ω	-100				dBc	Тур	С
		$R_L = 1 \text{ k}\Omega$	-100				dBc	Тур	С
Third-Order Intermodulation Distortion (IMD ₃)	$G = +2$, $V_O = 2 - V_{PP}$ envelope,		-84				dBc	Тур	С
Third-Order Output Intercept (OIP ₃)	f = 20 MHz	spacing,	48				dBm	Тур	С
Noise Figure	G = +2, f = 1 G	iHz	15				dB	Тур	С
Input Voltage Noise	f = 1 MHz		2.4				nV/√ Hz	Тур	С
Input Current Noise	f = 1 MHz		2.1				pA/√ Hz	Тур	С
DC PERFORMANCE	•				!	1			
Open-Loop Voltage Gain (A _{OL})	$V_0 = \pm 0.8 \text{ V}, \text{ V}$	/ _{CM} = 2.5 V	65	54	50	50	dB	Min	Α
Input Offset Voltage			0.5	4	5	5	mV	Max	Α
Input Offset Voltage Drift	1				5	5	μV/°C	Тур	В
Input Bias Current	1,, 0,5,,		7	12	18	18	μΑ	Max	Α
Input Bias Current Drift	$V_{CM} = 2.5 \text{ V}$				50	50	nA/°C	Тур	В
Input Offset Current	1	0.5	1	1.2	1.2	μA	Max	А	
Input Offset Current Drift	1				10	10	nA/°C	Тур	В
INPUT CHARACTERISTICS	•		-		•	•			-
Common-Mode Input Range			-0.2 to 5.2	0.2 to 4.8	0.4 to 4.6	0.4 to 4.6	V	Min	Α
Common-Mode Rejection Ratio	$V_0 = \pm 0.2 \text{ V}, \text{ V}$	/ _{CM} = 2.5 V	95	80	73	73	dB	Min	А
Input Resistance	Fack toward 1		100				kΩ	Тур	С
Input Capacitance	- ⊨acn input, ref	erenced to GND	1.5				pF	Тур	С

⁽¹⁾ Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

ELECTRICAL CHARACTERISTICS (continued)

Specifications: V $_{\text{S}}$ = 5 V: R $_{\text{F}}$ = 249 $\Omega,~R_{\text{L}}$ = 100 $\Omega,$ and G = +2 unless otherwise noted

		TYP		OVER 1	EMPERAT	URE		TEST	
PARAMETER	CONDITIONS	25°C	25°C	0°C to 70°C	–40°C to 85°C	UNITS	MIN/ MAX	LEVEL ⁽¹⁾	
OUTPUT CHARACTERISTICS	,								
Output Voltage Swing	R _L = 100 Ω	1.1 to 3.9	1.2 to 3.8	1.3 to 3.7	1.3 to 3.7	V	Min	Α	
Output Voltage Swing	$R_L = 1 \text{ k}\Omega$	1 to 4	1.1 to 3.9	1.2 to 3.8	1.2 to 3.8	V	IVIIII	A	
Output Current (Sourcing)	$R_L = 10 \Omega$	140	100	57	57	mA	Min	Α	
Output Current (Sinking)	$R_L = 10 \Omega$	92	65	40	40	mA	Min	Α	
Output Impedance	f = 100 kHz	0.016				Ω	Тур	А	
POWER SUPPLY									
Maximum Operating Voltage		5	5.5	5.5	5.5	V	Max	А	
Minimum Operating Voltage		5	2.7	2.7	2.7	, v	Min		
Maximum Quiescent Current		18	18.9	19.4	19.4	mA	Max	А	
Minimum Quiescent Current		18	17.5	16.6	16.6	mA	Min	А	
Power Supply Rejection (+PSRR)	$V_{S+} = 5.5 \text{ V to } 4.5 \text{ V}, V_{S-} = 0 \text{ V}$	80	73	66	66	dB	Min	Α	
Power Supply Rejection (-PSRR)	$V_{S+} = 5 \text{ V}, V_{S-} = -0.5 \text{ V} \text{ to } +0.5$	60	57	54	54	dB	Min	Α	

ELECTRICAL CHARACTERISTICS

Specifications: V $_{S}$ = 3 V: R $_{F}$ = 249 $\Omega,~R_{L}$ = 499 $\Omega,$ and G = +2 unless otherwise noted

					OVER	TEMPE	RATURE		
PARAMETER	COND	ITIONS	25°C	25°C	0°C to 70°C	-40°C to 85°C	UNITS	MIN/ MAX	TEST LEVEL ⁽¹⁾
AC PERFORMANCE									
	$G = +1, V_O = 100$	G = +1, V _O = 100 mVpp					GHz	Тур	С
Small-Signal Bandwidth	$G = +2, V_O = 100$) mVpp	900				MHz	Тур	С
Smail-Signal Bandwidth	$G = +5, V_O = 100$) mVpp	190				MHz	Тур	С
	$G = +10, V_O = 10$	00 mVpp	83				MHz	Тур	С
Gain Bandwidth Product	G >+10		830				MHz	Тур	С
Large-Signal Bandwidth	G = +2, V _O = 1 V	PP	450				MHz	Тур	С
Slew Rate	$G = +2, V_O = 1-V$	Step	750				V/μs	Тур	С
Siew Rate	$G = +2, V_O = 1-V$	Step	675				V/μs	Тур	С
Settling Time to 1%	$G = -2$, $V_O = 0.5$	-V Step	4.5				ns	Тур	С
Settling Time to 0.1%	$G = -2$, $V_O = 0.5$	-V Step	20				ns	Тур	С
Rise / Fall Times	$G = +2, V_O = 0.5$	-V Step	1.5				ns	Тур	С
Harmonic Distortion									
Second Harmonic Distortion	G = +2,	_	-92				dBc	Тур	С
Third Harmonic Distortion	$V_{O} = 0.5 V_{PP},$ f = 10 MHz	$R_L = 499 \Omega$	-91				dBc	Тур	С
Noise Figure	G = +2, f = 1 GH	Z	15				dB	Тур	С
Input Voltage Noise	f = 1 MHz		2.4				nV/√ Hz	Тур	С
Input Current Noise	f = 1 MHz		2.1				pA/√ Hz	Тур	С
DC PERFORMANCE	•								
Open-Loop Voltage Gain (A _{OL})	$V_{O} = \pm 0.5 \text{ V}, V_{CI}$	_M = 1.5 V	49	44			dB	Min	А
Input Offset Voltage			2	4	5	5	mV	Max	А
Input Offset Voltage Drift					5	5	μV/°C	Тур	В
Input Bias Current	15.7		7	12	18	18	μΑ	Max	Α
Input Bias Current Drift	$V_{CM} = 1.5 \text{ V}$				50	50	nA/°C	Тур	В
Input Offset Current			0.4	1	1.2	1.2	μA	Max	А
Input Offset Current Drift		1			10	10	nA/°C	Тур	В
INPUT CHARACTERISTICS									
Common-Mode Input Range			-0.2 to 3.2	0.2 to 2.8	0.4 to 2.6	0.4 to 2.6	V	Min	Α
Common-Mode Rejection Ratio	$V_0 = \pm 0.09 \text{ V}, V_0$	_{CM} = 1.5 V	92	80	70	70	dB	Min	Α
Input Resistance	Food innut refer	anood to CND	100				kΩ	Тур	С
Input Capacitance	Each input, refere	enced to GND	1.5				pF	Тур	С

⁽¹⁾ Test levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

ELECTRICAL CHARACTERISTICS (continued)

Specifications: V $_{\text{S}}$ = 3 V: R $_{\text{F}}$ = 249 $\Omega,$ R $_{\text{L}}$ = 499 $\Omega,$ and G = +2 unless otherwise noted

		TYP		OVER	TEMPE	RATURE		
PARAMETER	CONDITIONS	25°C	25°C	0°C to 70°C	-40°C to 85°C	UNITS	MIN/ MAX	TEST LEVEL ⁽¹⁾
OUTPUT CHARACTERISTIC								
Output Voltage Swing	R _L = 100 Ω	1.1 to 1.9	1.2 to 1.8	1.3 to 1.7	1.3 to 1.7	V	Min	А
Output Voltage Swing	$R_L = 1 \text{ k}\Omega$	1 to 2	1.1 to 1.9	1.2 to 1.8	1.2 to 1.8	V	IVIIII	
Output Current (Sourcing)	$R_L = 10 \Omega$	57	50	40	40	mA	Min	Α
Output Current (Sinking)	$R_L = 10 \Omega$	57	45	35	35	mA	Min	Α
Output Impedance	f = 100 kHz	0.016				Ω	Тур	Α
POWER SUPPLY								
Maximum Operating Voltage		3	5.5	5.5	5.5	V	Max	Α
Minimum Operating Voltage		3	2.7	2.7	2.7	v	Min	A
Maximum Quiescent Current		17.2	17.9	18.4	18.4	mA	Max	Α
Minimum Quiescent Current		17.2	16.5	15.6	15.6	mA	Min	Α
Power Supply Rejection (+PSRR)	$V_{S+} = 3.3 \text{ V to } 2.7 \text{ V}, V_{S-} = 0 \text{ V}$	80	60	54	54	dB	Min	Α
Power Supply Rejection (-PSRR)	$V_{S+} = 5 \text{ V}, V_{S-} = -0.5 \text{ V} \text{ to } +0.5 \text{ V}$	60	55	52	52	dB	Min	А

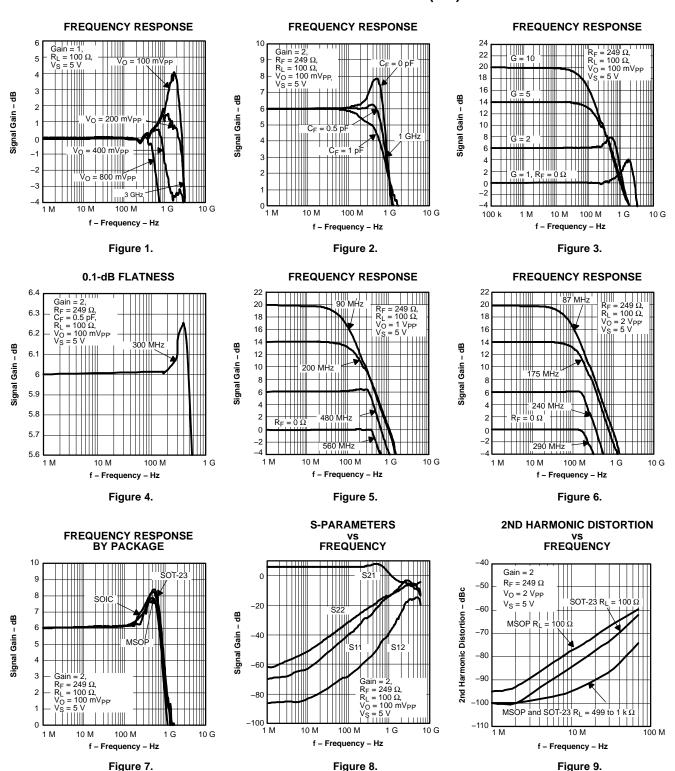
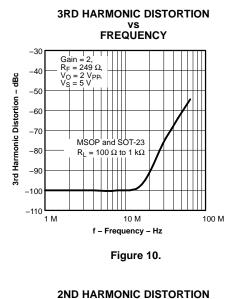
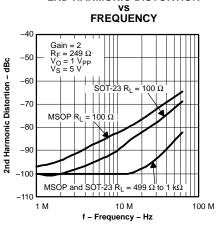

TYPICAL CHARACTERISTICS

Table of Graphs

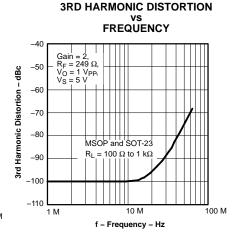
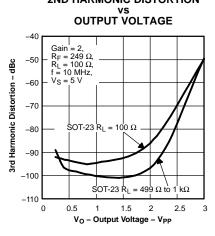
			FIGURE
5 V			
	Frequency response		1–3, 5, 6
	0.1-dB Flatness		4
	Frequency response by package		7
	S-Parameters	vs Frequency	8
	2nd Harmonic distortion	vs Frequency	9, 11
	3rd Harmonic distortion	vs Frequency	10, 12
	2nd Harmonic distortion	vs Output voltage	13
	3rd Harmonic distortion	vs Output voltage	14
IMD ₃	3rd Order intermodulation distortion	vs Frequency	15
OIP ₃	3rd Order output intercept point	vs Frequency	16
SR	Slew rate	vs Output voltage	17
V_n/I_n	Noise	vs Frequency	18
	Noise figure	vs Frequency	19
I _q	Quiescent current	vs Supply voltage	20
	Rejection ratio	vs Frequency	21
Vo	Output voltage	vs Load resistance	22
Vos	Input offset voltage	vs Input common-mode voltage	23
I _{IB}	Input bias and offset current	vs Case temperature	24
Vos	Input offset voltage	vs Case temperature	25
	Open-loop gain	vs Frequency	26
Vo	Small-signal transient response		27
Vo	Large-signal transient response		28
Vo	Settling time		29
Vo	Overdrive recovery time		30
Z _O	Output impedance	vs Frequency	31
3 V		•	
	Frequency response		32–35
	2nd Harmonic distortion	vs Frequency	36
	3rd Harmonic distortion	vs Frequency	37
	Harmonic Distortion	vs Output voltage	38
SR	Slew rate	vs Output voltage	39
Vo	Settling time		40
Vo	Output voltage	vs Load resistance	41
I _{IB}	Input bias and offset current	vs Case temperature	42
Vos	Input offset voltage	vs Case temperature	43
Vo	Large-signal transient response		44
Vo	Overdrive recovery time		45
Z _O	Output impedance	vs Frequency	46

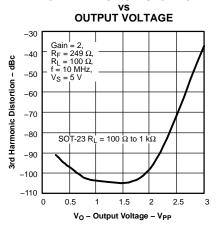



TYPICAL CHARACTERISTICS (5 V)

TYPICAL CHARACTERISTICS (5 V) (continued)

2ND HARMONIC DISTORTION


Figure 11.

3RD HARMONIC DISTORTION

Figure 12.

3RD ORDER INTERMODULATION DISTORTION

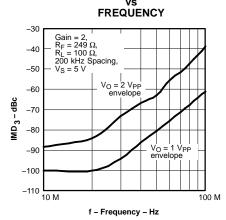
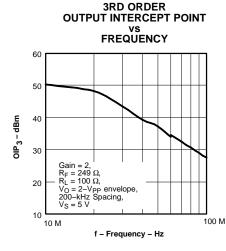
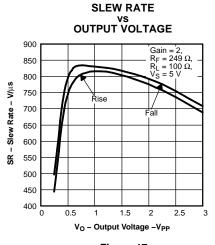
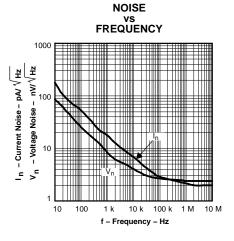




Figure 13.

Figure 14.

Figure 15.



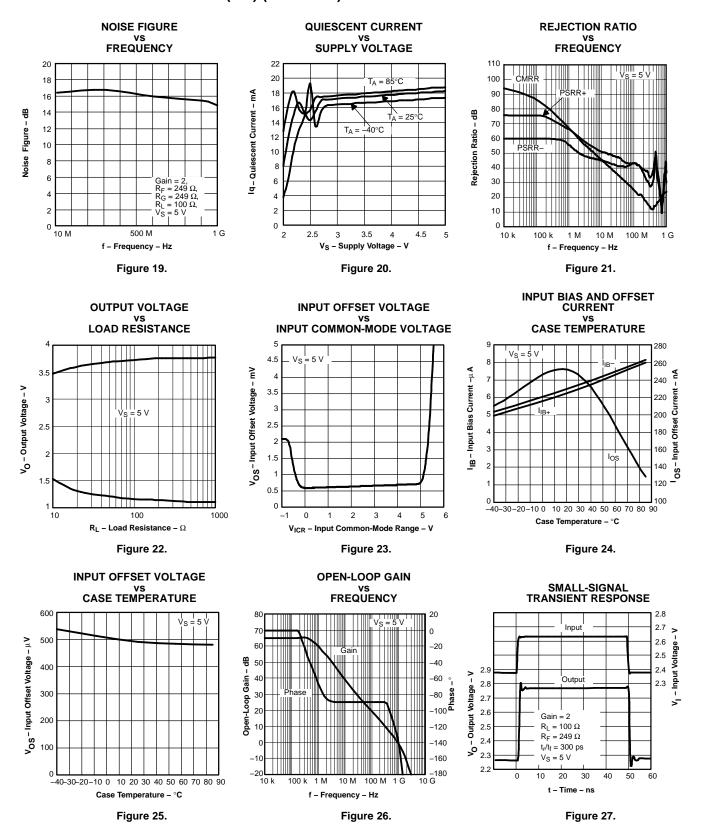
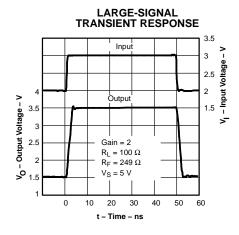
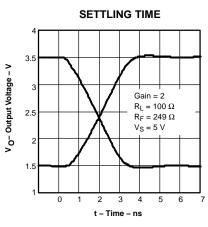

Figure 16.

Figure 17.

Figure 18.




TYPICAL CHARACTERISTICS (5 V) (continued)

TYPICAL CHARACTERISTICS (5 V) (continued)

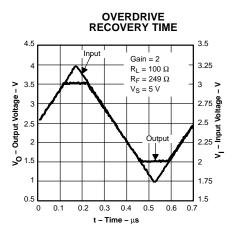


Figure 28.

Figure 29.

Figure 30.

OUTPUT IMPEDANCE vs FREQUENCY

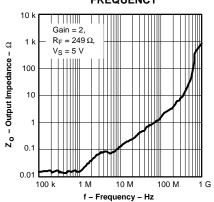


Figure 31.

TYPICAL CHARACTERISTICS (3 V)

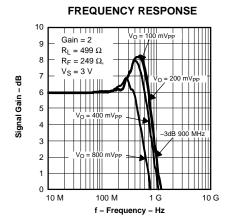


Figure 32.

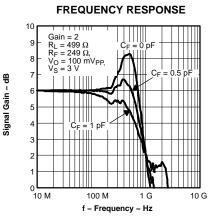


Figure 33.

2ND HARMONIC DISTORTION

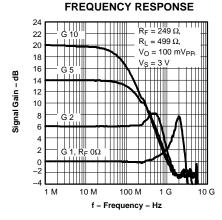


Figure 34.

3RD HARMONIC DISTORTION

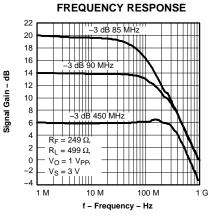


Figure 35.

HARMONIC DISTORTION

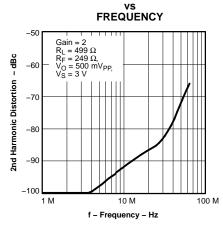


Figure 36.
SLEW RATE

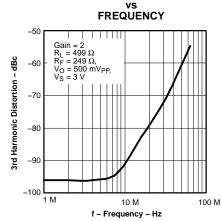


Figure 37.

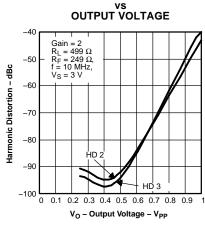


Figure 38.

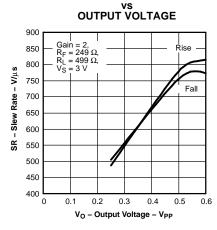


Figure 39.

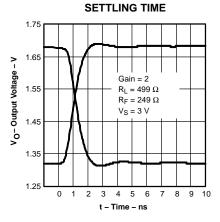


Figure 40.

TYPICAL CHARACTERISTICS (3 V) (continued)

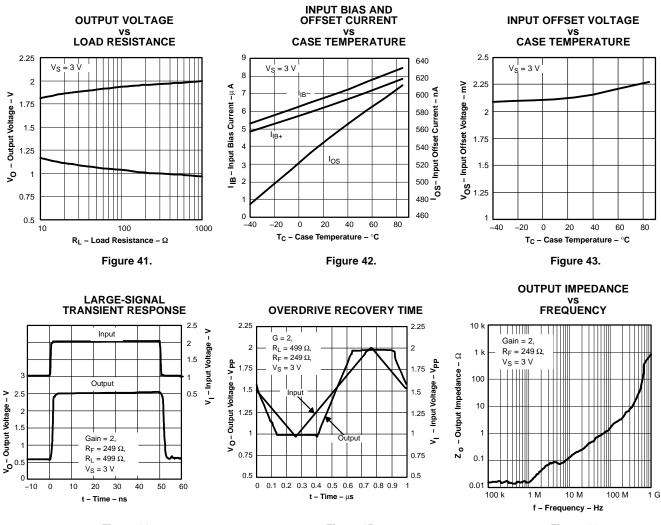


Figure 44. Figure 45. Figure 46.

APPLICATION INFORMATION

For many years, high-performance analog design has required the generation of split power supply voltages, like ± 15 V, ± 8 V, and more recently ± 5 V, in order to realize the full performance of the amplifiers available. Modern trends in high-performance analog are moving towards single-supply operation at 5 V, 3 V, and lower. This reduces power supply cost due to less voltages being generated and conserves energy in low power applications. It can also take a toll on available dynamic range, a valuable commodity in analog design, if the available voltage swing of the signal must also be reduced.

Two key figures of merit for dynamic range are signal-to-noise ratio (SNR) and spurious free dynamic range (SFDR).

SNR is simply the signal level divided by the noise:

$$SNR = \frac{Signal}{Noise}$$

and SFDR is the signal level divided by the highest spur:

$$SFDR = \frac{Signal}{Spur}$$

In an operational amplifier, reduced supply voltage typically results in reduced signal levels due to lower voltage available to operate the transistors within the amplifier. When noise and distortion remain constant, the result is a commensurate reduction in SNR and SFDR. To regain dynamic range, the process and the architecture used to make the operational amplifier must have superior noise and distortion performance with lower power supply overhead required for proper transistor operation.

The THS4304 BiCom3 operational amplifier is just such a device. It is able to provide 2-Vpp signal swing at its output on a single 5-V supply with noise and distortion performance similar to the best 10-V operational amplifiers on the market today

GENERAL APPLICATION

The THS4304 is a traditional voltage-feedback topology with wideband performance up to 3 GHz at unity gain. Care must be taken to ensure that parasitic elements do not erode the phase margin.

Capacitance at the output and inverting input, and resistance and inductance in the feedback path, can cause problems.

To reduce parasitic capacitance, the ground plane should be removed from under the part.

To reduce inductance in the feedback, the circuit traces should be kept as short and direct as possible. For best performance in non-inverting unity gain (G=+1V/V), it is recommended to use a wide trace directly between the output and inverting input.

For a gain of +2V/V, it is recommended to use a 249- Ω feedback resistor. With good layout, this should keep the frequency response peaking to around 2 dB. This resistance is high enough to not load the output excessively, and the part is capable of driving 100- Ω load with good performance. Higher-value resistors can be used, with more peaking. For example, 499 Ω gives about 5 dB of peaking, and gives slightly better distortion performance with 100- Ω load. Lower value feedback resistors can also be used to reduce peaking, but degrades the distortion performance with heavy loads.

Power supply bypass capacitors are required for proper operation. The most critical are 0.1-µF ceramic capacitors; these should be placed as close to the part as possible. Larger bulk capacitors can be shared with other components in the same area as the operational amplifier.

HARMONIC DISTORTION

For best second harmonic (HD2), it is important to use a single-point ground between the power supply bypass capacitors when using a split supply. It is also recommended to use a single ground or reference point for input termination and gain-setting resistors (R8 and R11 in the non-inverting circuit). It is recommended to follow the EVM layout closely in your application.

APPLICATION INFORMATION (continued)

SOT-23 versus MSOP

With light loading of $500-\Omega$ and higher resistance, the THS4304 shows HD2 that is not dependant of package. With heavy output loading of $100~\Omega$, the THS4304 in SOT-23 package shows about 6 dB better HD2 performance versus the MSOP package.

EVALUATION MODULES

The THS4304 has two evaluation modules (EVMs) available. One is for the MSOP (DGK) package and the other for the SOT-23 (DBV) package. These provide a convenient platform for evaluating the performance of the part and building various different circuits. The full schematics, board layout, and bill of materials (as supplied) for the boards are shown in the following illustrations.

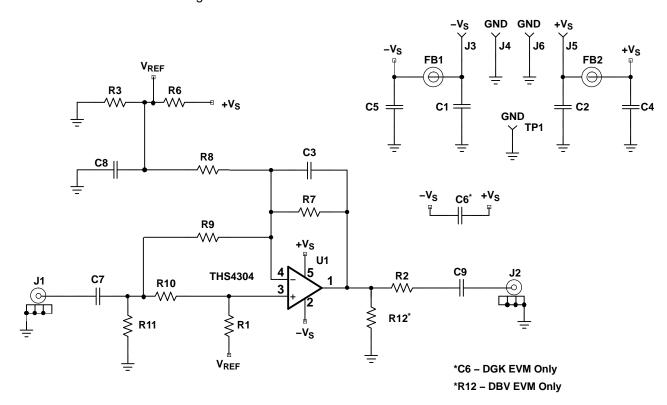


Figure 47. EVM Full Schematic

APPLICATION INFORMATION (continued)

EVM BILL OF MATERIALS

			THS430	04 EVM ⁽¹⁾			
Item	Description	SMD Size	Reference Designator	PCB Quantity	Manufacturer's Part Number	Distributor's Part Number	
1	Bead, ferrite, 3-A, 80-Ω	1206	FB1, FB2	2	(STEWARD) HI1206N800R-00	(DIGI-KEY) 240-1010-1-ND	
2	Capacitor, 3.3-µF, Ceramic	1206	C1, C2	2	(AVX) 1206YG335ZAT2A	(GARRETT) 1206YG335ZAT2A	
3	Capacitor, 0.1-μF, Ceramic	0603	C4, C5	2	(AVX) 0603YC104KAT2A	(GARRETT) 0603YC104KAT2A	
4	Open	0603	C3, C6 ⁽²⁾	2			
5	Open	0603	R1, R3, R6, R9, R12 ⁽³⁾	5			
6	Resistor, 0-Ω, 1/10-W, 1%	0603	C7. C8, C9, C10	4	(KOA) RK73Z1JTTD	(GARRETT) RK73Z1JTTD	
7	Resistor, 49.9-Ω, 1/10-W, 1%	0603	R2, R11	2	(KOA) RK73H1JLTD49R9F	(GARRETT) RK73H1JLTD49R9F	
8	Resistor, 249-Ω, 1/10-W, 1%	0603	R7, R8	2	(KOA) RK73H1JLTD2490F	(GARRETT) RK73H1JLTD2490F	
9	Jack, banana recepticle, 0.25-in. diameter hole		J3, J4, J5, J6	4	(HH SMITH) 101	(NEWARK) 35F865	
10	Test point, black		TP1	1	(KEYSTONE) 5001	(DIGI-KEY) 5001K-ND	
11	Connector, edge, SMA PCB jack		J1, J2	2	(JOHNSON) 142-0701-801	(NEWARK) 90F2624	
12	Integrated Circuit, THS4304		U1	1	(TI) THS4304DGK, or (TI) THS4304DBV		
13	Standoff, 4-40 HEX, 0.625-in. Length			4	(KEYSTONE) 1808	NEWARK) 89F1934	
14	Screw, Phillips, 4-40, 0.250-in.			4	SHR-0440-016-SN		
15	Board, printed-circuit			1	(TI) THS4304DGK ENG A, or (TI) THS4304DBV ENG A		

⁽¹⁾ NOTE: All items are designated for both the DBV and DGK EVMs unless otherwise noted.
(2) C6 used on DGK EVM only.
(3) R12 used on DBV EVM only.

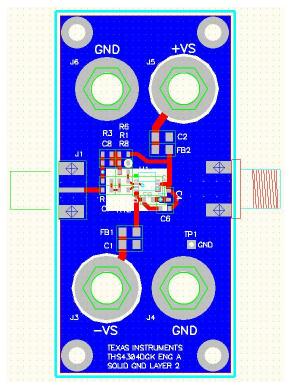


Figure 48. THS4304DGK EVM Layout Top and L2

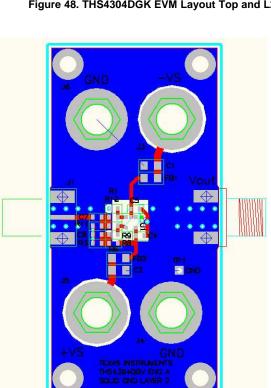


Figure 50. THS4304DBV EVM Layout Top and L2

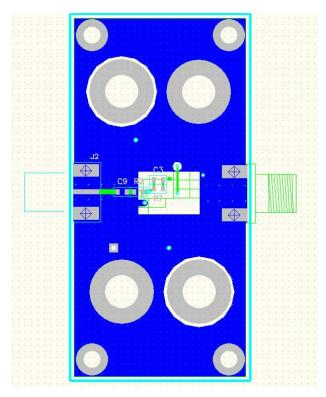


Figure 49. THS4304DGK EVM Layout Bottom and L3

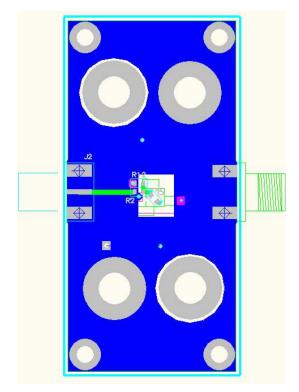


Figure 51. THS4304DBV EVM Layout Bottom and L3

NON-INVERTING GAIN WITH SPLIT SUPPLY

The following schematic shows how to configure the operational amplifier for non-inverting gain with split power supply (\pm 2.5V). This is how the EVM is supplied from TI. This configuration is convenient for test purposes because most signal generators and analyzer are designed to use ground-referenced signals by default. Note the input and output provides $50-\Omega$ termination.

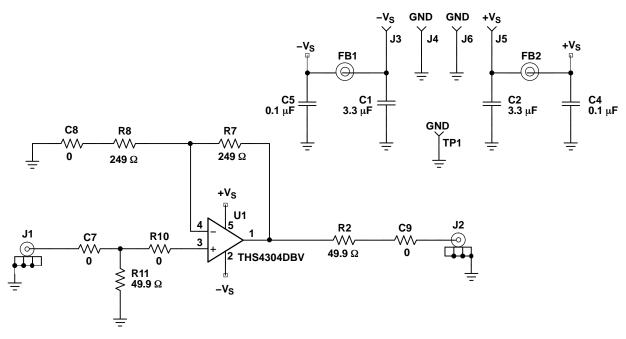


Figure 52. Non-Inverting Gain with Split Power Supply

INVERTING GAIN WITH SPLIT POWER SUPPLY

The following schematic shows how to configure the operational amplifier for inverting gain of 1 (–1 V/V) with split power supply (± 2.5 V). Note the input and output provides 50- Ω termination for convenient interface to common test equipment.

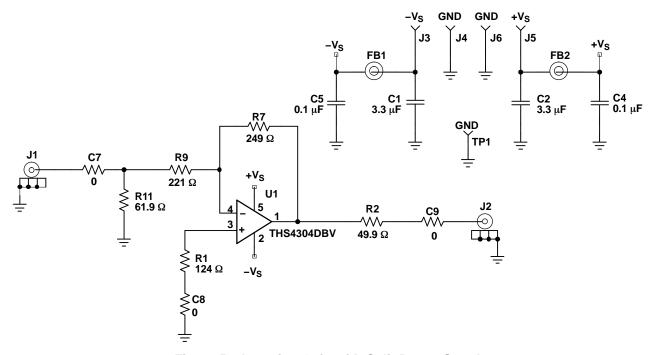


Figure 53. Inverting Gain with Split Power Supply

NON-INVERTING SINGLE-SUPPLY OPERATION

The THS4304 EVM can easily be configured for single 5-V supply operation, as shown in the following schematic, with no change in performance. This circuit passes dc signals at the input, so care must be taken to reference (or bias) the input signal to mid-supply.

If dc operation is not required, the amplifier can be ac coupled by inserting a capacitor in series with the input (C7) and output (C9).

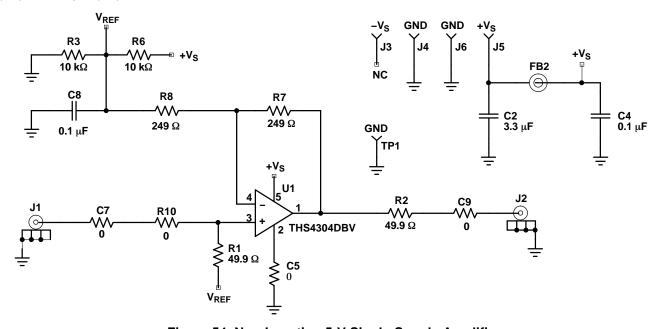


Figure 54. Non-Inverting 5-V Single-Supply Amplifier

DIFFERENTIAL ADC DRIVE AMPLIFIER

The circuit shown in Figure 54 is adapted as shown in Figure 55 to provide a high-performance differential amplifier drive circuit for use with high-performance ADCs, like the ADS5500 (14-bit 125-MSP ADC). For testing purposes, the circuit uses a transformer to convert the signal from a single-ended source to differential. If the input signal source in your application is differential and biased to mid-rail, no transformer is required.

The circuit employs two amplifiers to provide a differential signal path to the ADS5500. A resistor divider (two $10\text{-k}\Omega$ resistors) is used to obtain a mid-supply reference voltage of 2.5 V (VREF) (the same as shown in the single-supply circuit of Figure 54). Applying this voltage to the one side of RG and to the positive input of the operational amplifier (via the center-tap of the transformer) sets the input and output common-mode voltage of the operational amplifiers to mid-rail to optimize their performance. The ADS5500 requires an input common-mode voltage of 1.5 V. Due to the mismatch in required common-mode voltage, the signal is ac coupled from the amplifier output, via the two 1-nF capacitors, to the input of the ADC. The CM voltage of the ADS5500 is used to bias the ADC input to the required voltage, via the 1-k Ω resistors. Note: $100\text{-}\mu\text{A}$ common-mode current is drawn by the ADS5500 input stage (at 125 MSPS). This causes a 100-mV shift in the input common-mode voltage, which does not impact the performance when driving the input to -1 dB of full scale. To offset this effect, a voltage divider from the power supply can be used to derive the input common-mode voltage reference.

Because the operational amplifiers are configured as non-inverting, the inputs are high impedance. This is particularly useful when interfacing to a high-impedance source. In this situation, the amplifiers provide impedance matching and amplification of the signal.

The SFDR performance of the circuit is shown in the following graph (see Figure 56) and provides for full performance from the ADS5500 to 40 MHz.

The differential topology employed in this circuit provides for significant suppression of the 2nd-order harmonic distortion of the amplifiers. This, along with the superior 3rd-order harmonic distortion performance of the amplifiers, results in the SFDR performance of the circuit (at frequencies up to 40 MHz) being set by higher-order harmonics generated by the sampling process of the ADS5500.

The amplifier circuit (with resistor divider for bias voltage generation) requires a total of 185 mW of power from a single 5-V power supply.

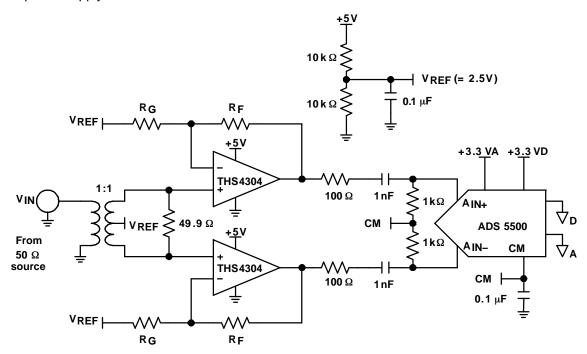


Figure 55. Differential ADC Drive Amplifier Circuit

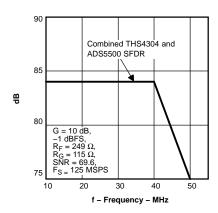


Figure 56. SFDR Performance versus Frequency – THS4304 Driving ADS5500

16-Sep-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
THS4304D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	4304	Samples
THS4304DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AKW	Samples
THS4304DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AKW	Samples
THS4304DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AKW	Samples
THS4304DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	4304	Samples
THS4304DGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AKU	Samples
THS4304DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	AKU	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

16-Sep-2017

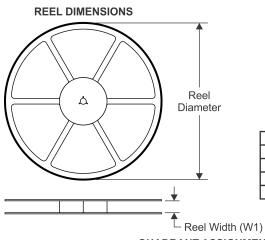
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF THS4304:

Space: THS4304-SP


NOTE: Qualified Version Definitions:

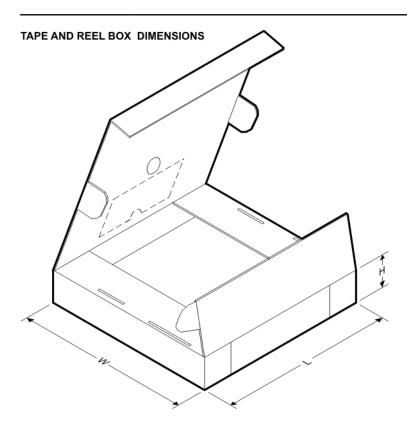
Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Sep-2017

TAPE AND REEL INFORMATION

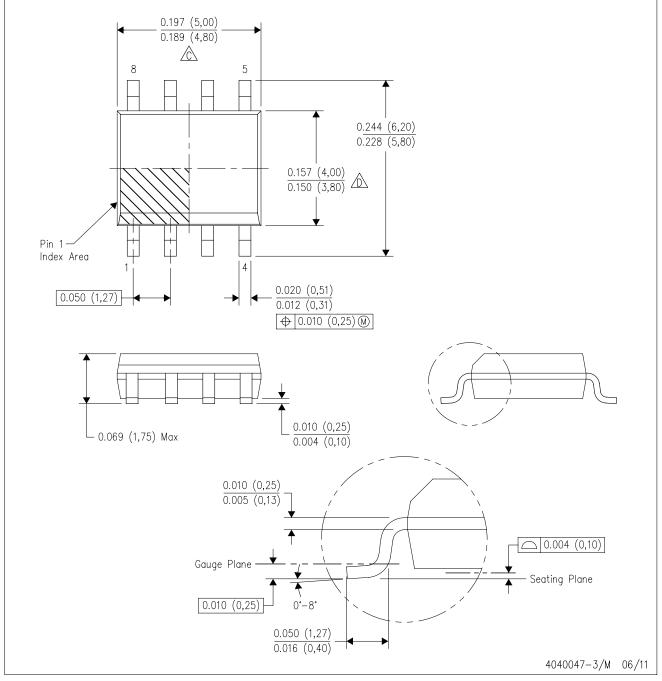
Α0	
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficults are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
THS4304DBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
THS4304DBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
THS4304DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 16-Sep-2017

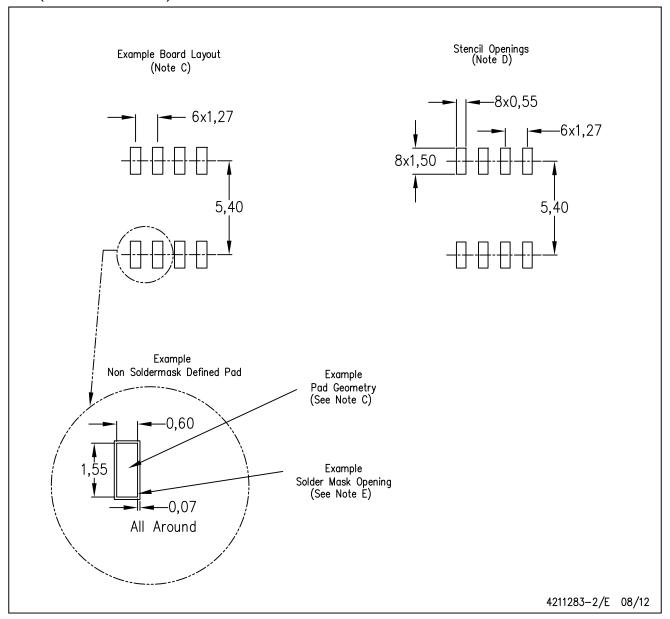


*All dimensions are nominal

7 III GITTIOTOTOTO GEO TIOTTIITGI								
Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
THS4304DBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0	
THS4304DBVT	SOT-23	DBV	5	250	182.0	182.0	20.0	
THS4304DGKR	VSSOP	DGK	8	2500	346.0	346.0	29.0	

D (R-PDSO-G8)

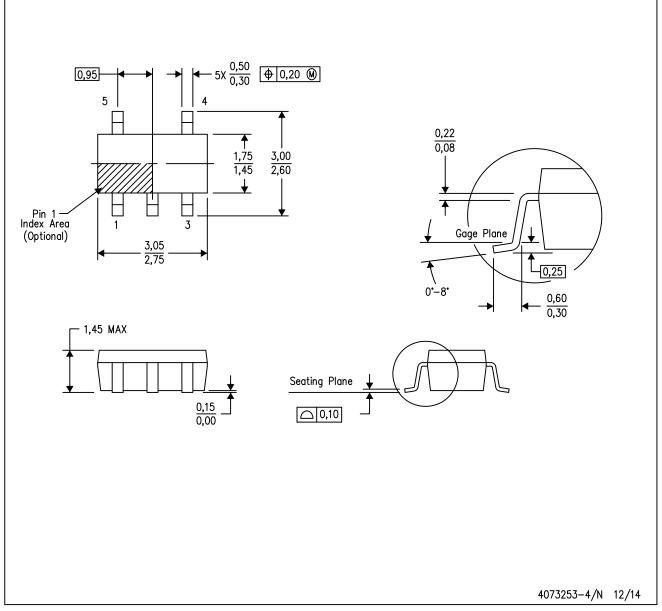
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

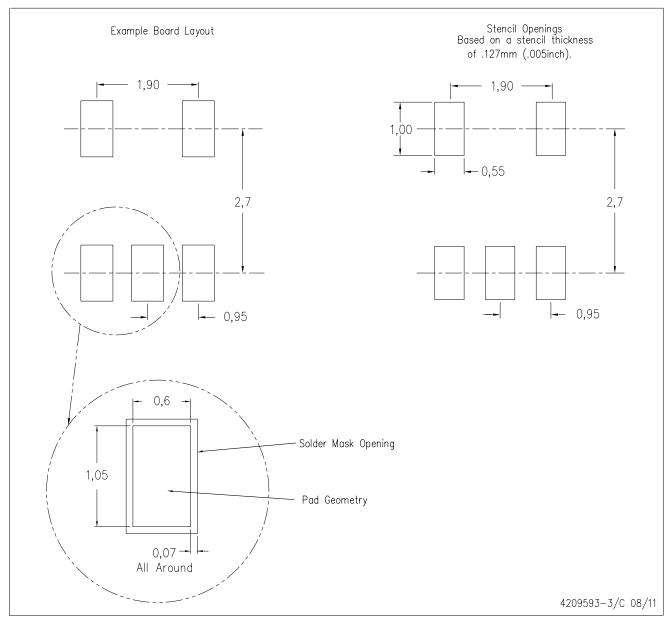
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DBV (R-PDSO-G5)

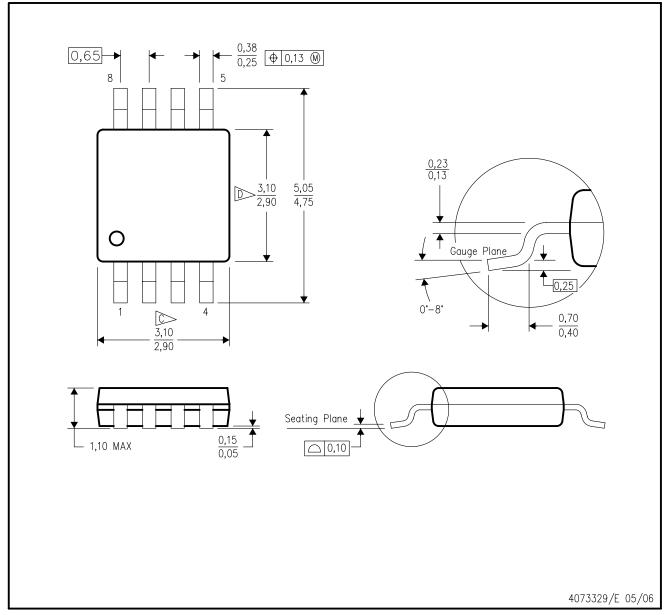
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.