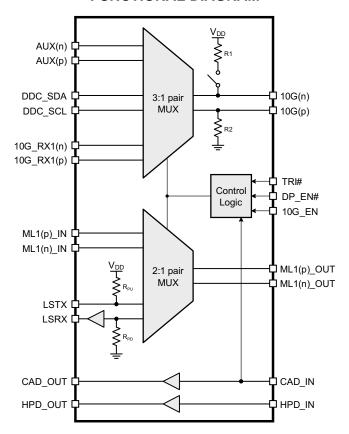


10.3Gbps Thunderbolt™ Port and DisplayPort™ Switch

Check for Samples: HD3SS0001

FEATURES

- Compatible with Thunderbolt[™] Technology Electrical Standards and DisplayPort [™]1.2a
- Wide –3dB Differential Bandwidth of Over 10GHz on 10G Path
- Supports DP and DP++ Configurations
- Handles HPD (5V tolerant) and Cable Detect
- Supports AUX and DDC MUX
- Excellent Dynamic Characteristics (on 10G path, typical values at 5GHz):
 - Crosstalk = -35dB
 - Off-Isolation = -24dB
 - Insertion Loss = -1.5dB
 - Return Loss = -20dB
 - Intra-pair Skew Added < 4ps
- Single 3.3V Power Supply
- Small 3x3mm 24-Pin QFN Package
- Low Power Consumption
 - 3.3mW Typical Active Power
 - 80 μW Typical Detect Mode


DESCRIPTION

The HD3SS0001 is a high-speed passive-switch device with integrated buffers and resistors, designed to support Thunderbolt™ technology, DisplayPort, and Dual Mode DisplayPort. The 10G path supports a high 10GHz bandwidth and excellent loss characteristics, while the DisplayPort path supports 5.4Gbps.

The integrated 3-pairs to 1-pair multiplexer (3:1 MUX) switches between DDC, AUX, and 10.3Gbps signals. The integrated 2-pairs to 1-pair multiplexer (2:1 MUX) switches between the Thunderbolt™ technology Low Speed UART transmit/receive pair and DisplayPort Main Link 1.

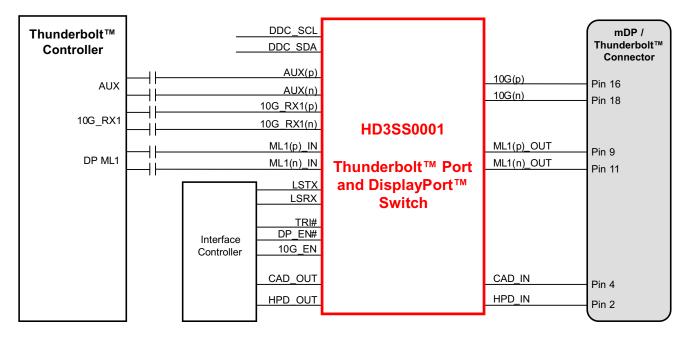
The MUXs are controlled by 4 input pins: TRI#, DP_EN#, 10G_EN, and CAD_IN (cable detect from the connector). The HD3SS0001 is packaged in a small 3x3mm 24-pin QFN, operates from a single 3.3V supply, and supports an ambient temperature range of -40°C to 85°C.

FUNCTIONAL DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

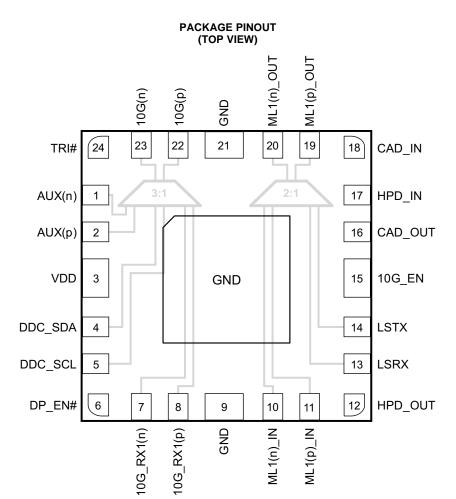
Thunderbolt is a trademark of Intel Corp.

DisplayPort is a trademark of VESA Standards Association.


SLAS827 - SEPTEMBER 2013 www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TYPICAL APPLICATION


TRUTH TABLE

		LOGICAL II	NPUT TO SE	T ⁽¹⁾	EFFECT			
MODE	TRI#	DP_EN#	10G_EN	CAD_IN	2:1 MUX SELECTION ⁽²⁾	3:1 MUX SELECTION ⁽²⁾	PULL-UP RESISTOR on 10G(n)	
Thunderbolt™	1	1	1	Х	LS	10G	Disconnected	
Protocol	0	1	1	Х	LS	Tri-stated	Disconnected	
Disale: Deut	1	0	0	0	ML	AUX	Connected	
DisplayPort	0	0	0	0	Tri-Stated	Tri-stated	Connected	
TMDO	1	0	0	1	ML	DDC	Connected	
TMDS	0	0	0	1	Tri-Stated	Tri-stated	Connected	
Detect Mode	Х	1	0	Х	LS	Tri-Stated	Connected	
[Invalid]	Х	0	1	Х	Tri-Stated	Tri-Stated	Disconnected	

^{(1) &}quot;X" = Don't Care.

Submit Documentation Feedback

⁽²⁾ MUX Selection names are abbreviated.

MUX PIN MAPPING(1)

CONTROLLER-SIDE PIN	Connector-Side Pin		
AUX(n)			
DDC_SDA	10G(n)		
10G_RX1(n)			
AUX(p)			
DDC_SCL	10G(p)		
10G_RX1(p)			
ML1(p)_IN	MI 4(n) OUT		
LSTX	ML1(p)_OUT		
ML1(n)_IN	MI 1(a) OLIT		
LSRX	ML1(n)_OUT		

(1) NOTE: The HD3SS0001 can tolerate polarity inversions for the differential signals denoted by the (p) and (n) terminology, to ease potential board routing issues. LSTX/LSRX cannot be swapped, since LSRX is buffered and therefore unidirectional. Also, note that the integrated pullup on 10G(n) and the integrated pulldown on 10G(p) cannot be swapped.

PIN FUNCTIONS

	PIN		SYSTEM	DESCRIPTION				
NO.	NAME	I/O SIDE		DESCRIPTION				
11	ML1(p)_IN			DisplayPort MainLink1(p) input				
10	ML1(n)_IN			DisplayPort MainLink1(n) input				
24	TRI#		Controller	Tri-State control (see TRUTH TABLE)				
6	DP_EN#	I		DisplayPort Enable, active-low (see TRUTH TABLE)				
15	10G_EN			10.3Gbps Mode Enable (see TRUTH TABLE)				
18	CAD_IN		Connector	Cable Detect				
17	HPD_IN		Connector	Hot Plug Detect				
2	AUX(p)			AUX Positive Signal				
1	AUX(n)			AUX Negative Signal				
5	DDC_SCL		Controller	DDC Clock				
4	DDC_SDA		Controller	DDC Data				
14	LSTX	1/0		UART TX Signal				
13	LSRX	1/0		UART RX Signal				
22	10G(p)			10G_RX1(p) or AUX(p) or DDC_SCL, with pull-down				
23	10G(n)		Connector	10G_RX1(n) or AUX(n) or DDC_SDA, with pull-up				
19	ML1(p)_OUT		Connector	DisplayPort MainLink1(p) output or LSTX				
20	ML1(n)_OUT			DisplayPort MainLink1(n) output or LSRX				
8	10G_RX1(p)			10.3Gbps Positive Signal				
7	10G_RX1(n)	0		10.3Gbps Negative Signal				
16	CAD_OUT			Cable Detect				
12	HPD_OUT		Controller	Hot Plug Detect				
3	V_{DD}	Dannan		Power supply				
9, 21, Center Pad	GND	Power Supply		Reference ground				

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range (unless otherwise noted)

		VAL	UE	UNIT	
		MIN	MAX		
Supply voltage range ⁽²⁾	V_{DD}	-0.5	4	V	
Valtage renge	Differential I/O	-0.5	4	\	
Voltage range	Control pin/buffers	-0.5	V _{DD} +0.5] V	
Clastrostatia diasharas	Human body model (3)		±1,500	V	
Electrostatic discharge	Charged-device model ⁽⁴⁾		±500	V	
Continuous power dissipation See Power Characte			r Characteristic	cs	

⁽¹⁾ Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Submit Documentation Feedback

⁽²⁾ All voltage values, except differential voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with JEDEC/ESDA JS-001-2011

⁽⁴⁾ Tested in accordance with JEDEC JESD22 C101-E

THERMAL INFORMATION

over operating free-air temperature range (unless otherwise noted)

	TUEDMAL METRIC(1)	HD3SS0001	LINUTO
	THERMAL METRIC ⁽¹⁾	24-PIN VQFN (RLL)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	41.5	
θ _{JCtop}	Junction-to-case (top) thermal resistance	43.1	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	6.3	90.00
θ_{JB}	Junction-to-board thermal resistance	11.2	°C/W
ΨЈΤ	Junction-to-top characterization parameter	1.2	
ΨЈВ	Junction-to-board characterization parameter	11.2	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

POWER CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX ⁽¹⁾	UNIT
I_{DD}	Supply Current in Active Mode	Outputs Floating		1.0	1.3	mA
I _{DETECT}	Supply Current in Detect Mode	DP_EN# = 1, 10G_EN = 0		26	50	μΑ
P_D	Power Dissipation in Active Mode			3.3	4.7	mW
P _{Detect}	Power Dissipation in Detect Mode			80	150	μW

⁽¹⁾ The maximum ratings are simulated for $V_{DD} = 3.6V$.

Product Folder Links: HD3SS0001

TEXAS INSTRUMENTS

RECOMMENDED OPERATING CONDITIONS

Typical values for all parameters are at V_{DD} = 3.3V and T_A = 25°C. (Temperature limits are specified by design)

	PARAMETER	NOTES/CONDITIONS	MIN	TYP	MAX	UNIT
V_{DD}	Supply voltage		3.0	3.3	3.6 ⁽¹⁾	V
T _A	Operating free-air temperature		-40		85	°C
\/	lanut high valtage	CAD_IN, HPD_IN ⁽²⁾ , TRI#, DP_EN#, and 10G_EN	2.0		V_{DD}	V
V_{IH}	Input high voltage	ML1(n)_OUT (when 2:1 MUX selects LS)	2.0		V_{DD}	v
\/	lanut laur valtaga	CAD_IN, HPD_IN ⁽²⁾ , TRI#, DP_EN#, and 10G_EN	-0.1		0.8	V
V_{IL}	Input low voltage	ML1(n)_OUT (when 2:1 MUX selects LS)	-0.1		0.8	V
1/	Output high voltage	CAD_OUT, HPD_OUT	2.7		V_{DD}	V
V _{OH}	Output high voltage	LSRX (when 2:1 MUX selects LS)	2.7		$V_{DD}^{(1)}$	V
V	Output law valtage	CAD_OUT, HPD_OUT	0.0		0.1	V
V_{OL}	Output low voltage	LSRX (when 2:1 MUX selects LS)			0.1	V
		TRI#, DP_EN#, 10G_EN, CAD_IN, and HPD_IN; $V_{DD} = 3.6V$, $V_{IN} = V_{DD}$			5	
I _{IH}	High-level input current	ML1(n)_OUT; V_{DD} = 3.6V; V_{IN} = V_{DD} (when 2:1 MUX selects LS)			3.75	μA
	Low-level input current	TRI#, DP_EN#, 10G_EN, CAD_IN, and HPD_IN; V _{DD} = 3.6V, V _{IN} = GND			100	nA
I _{IL}	Low-level input current	ML1(n)_OUT; V_{DD} = 3.6V, V_{IN} = GND (when 2:1 MUX selects LS)			100	ΠA
$V_{\text{I/O}_\text{Diff}}$	Differential I/O voltage	AUX(p)/AUX(n), 10G_RX1(p)/ 10G_RX1(n), ML1(p)_IN/ML1(n)_IN, 10G(p)/10G(n), and ML1(p)_OUT/ML1(n)_OUT when MUX's are connected to Differential Signals.	0		1.8	Vpp
V _{I/O_CM}	Common mode I/O voltage	AUX(p)/AUX(n), 10G_RX1(p)/10G_RX1(n), ML1(p)_IN/ML1(n)_IN, 10G(p)/ 10G(n), and ML1(p)_OUT/ML1(n)_OUT when MUX's are connected to Differential Signals.	0		2.0	V

⁽¹⁾ V_{DD} range supports 3.0V to 3.6V, but for Thunderbolt products it is anticipated that the V_{DD} must be maintained at less than or equal to 3.4V to ensure that the V_{OH} on the LSRx do not exceed 3.4V.

ELECTRICAL CHARACTERISTICS

(under recommended operation conditions)

	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT			
Thunde	hunderbolt™ Technology 10.3Gbps Link: 10G_RX1(p), 10G_RX1(n) ⁽¹⁾							
R_L	Differential Return Loss	f = 5.0 GHz	-20		dB			
IL	Differential Insertion Loss	f = 5.0 GHz	-1.5		dB			
O _{IRR}	Differential Off Isolation	f = 5.0GHz (see Figure 3)	-24		dB			
X _{TALK}	Differential Crosstalk	f = 5.0 GHz	-35		dB			
BW	Bandwidth	-3 dB	10		GHz			
t _{PD}	Propagation Delay(from input to output)	R_{sc} and R_L = 50 Ω (see Figure 2)		200	ps			
T _{SKEW}	Intra-Pair Skew Added	R_{sc} and $R_L = 50 \Omega$ (see Figure 2)		4	ps			
C _{ON}	Outputs ON Capacitance	V _I = 0 V, Outputs Open, Switch ON	1.5		pF			
C _{OFF}	Outputs OFF Capacitance	VI = 0 V, Outputs Open Switch OFF	1		pF			
R _{ON}	Output ON resistance	$V_{DD} = 3.3 \text{ V}, I_{O} = -15 \mu\text{A}$	7.5		Ω			
ΔR _{ON}	On resistance match between pairs of the same channel	$V_{DD} = 3.3V; I_{O} = -15 \mu A$		1	Ω			
T _{ON}	Control Line Change to MUX Output	Con Figure 4		400				
T _{OFF} Switched		See Figure 1		10	μs			

⁽¹⁾ These values apply for CAD_IN tri-stated, unless otherwise noted.

Product Folder Links :HD3SS0001

⁽²⁾ HPD_IN is 5V tolerant.

ELECTRICAL CHARACTERISTICS (continued)

(under recommended operation conditions)

(under r	ecommended operation conditions)				
	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
Display	Port Link: ML1(p)_IN, ML1(n)_IN				
R_L	Differential Return Loss	f = 2.7 GHz	-16		dB
IL	Differential Insertion Loss	f = 2.7 GHz; V _{CM} = 0 V	-0.8		dB
O _{IRR}	Differential Off-Isolation	f = 2.7 GHz (see Figure 3)	-20		dB
X _{TALK}	Differential Crosstalk	f = 2.7 GHz	-35		dB
BW	Differential Bandwidth	-3 dB	7		GHz
t _{PD}	Propagation Delay(from input to output)	R_{SC} and R_L = 50 Ω (see Figure 2)		200	ps
T _{SKEW}	Intra-pair Skew Added	R_{SC} and $R_L = 50 \Omega$ (see Figure 2)		4	ps
C _{ON}	Outputs ON Capacitance	VI = 0 V; Outputs Open; Switch ON	1.5		pF
C _{OFF}	Outputs OFF Capacitance	V _I = 0 V; Outputs Open; Switch OFF	1		pF
R _{ON}	Output ON resistance	V_{DD} = 3.3 V; I_{O} = -15 mA; V_{CM} = 0.5 V to 1.5 V; CAD_IN = 0 V	6	8	Ω
ΔR_{ON}	On resistance match between pairs of the same channel	V_{DD} = 3.3 V; I_{O} = -15 mA; V_{CM} = 0.5 V to 1.5 V		1	Ω
T _{ON}	Control Line Change to MUX Output Switched	See Figure 1		400 10	μs
	rbolt™ Technology Low Speed UART : I	LSTX		I	
C _{ON}	Outputs ON capacitance	V _I = 0 V , Outputs Open, Switch ON	8		pF
C _{OFF}	Outputs OFF capacitance	V _I = 0 V, Outputs Open, Switch OFF	3		pF
R _{ON}	Output ON resistance	V _{DD} = 3 V, V _{CM} = 0 V to 3 V, I _O = -1 mA CAD_IN = 0 V	12	19	Ω
t _{PD}	Propagation Delay	LSTX to ML1(p)_OUT	200		ps
Display	Port: AUX(p), AUX(n)	1 ""	Ш.		
C _{ON}	Outputs ON Capacitance	V _I = 0 V; Outputs Open; Switch ON	6		pF
C _{OFF}	Outputs OFF Capacitance	V _I = 0 V; Outputs Open; Switch OFF	3		pF
R _{ON}	Output ON resistance	$V_{DD} = 3.3V; I_{O} = -10 \text{ mA}; AUX(p) = 0.3 V;$ $AUX(n) = 3.0 V; CAD_IN = 0 V$	12		Ω
ΔR _{ON}	On resistance match between pairs of the same channel	$V_{DD} = 3.3 \text{ V}; I_{O} = -10 \text{ mA};$ $V_{CM} = 0.5 \text{ V to } 1.5 \text{ V}$		1	Ω
T _{ON}	Control line change to Mux output			40	ms
T _{OFF}	switched	See Figure 2		10	μs
	rbolt Technology Low Speed UART : LS	RX			
C _{ON}	Outputs capacitance		3		pF
Z _O	Output impedance	V _{DD} = 3.3 V	60		Ω
t _{PD}	Propagation delay	ML1(n)_OUT to LSRX	3.2		ns
t _r	Rise Time	V _{DD} = 3 V	3		ns
t _f	Fall Time	V _{DD} = 3 V	3		ns
T _{ON}	Control line change to MUX Output			400	μs
T _{OFF}	Switched	See Figure 1		10	μs

TEXAS INSTRUMENTS

ELECTRICAL CHARACTERISTICS (continued)

(under recommended operation conditions)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Display	Port : DDC_SCL, DDC_SDA					
C _{ON}	Outputs ON capacitance	V _I = 0 V, Outputs Open, Switch ON		9		pF
C _{OFF}	Outputs OFF capacitance	V _I = 0 V, Outputs Open, Switch OFF		3		pF
R _{ON}	Output ON resistance	V_{DD} = 3.3 V, I_{O} = -10 mA, V_{CM} = 0.4 V, CAD_IN = 3.3 V		80	150	Ω
T _{ON}	Control line change to MUX output	See Figure 1			400	
T _{OFF}	switched				10	μs
UART a	and 10G MUX Outputs : LSTX/LSRX/10G	(p)/10G(n)				
R1	Integrated Pullup Resistance	10G(n) pin when in DP, TMDS, or Detect Mode		87	105	kΩ
R2	Integrated Pulldown Resistance	10G(p) pin when in DP, TMDS, or Detect Mode, or VDD = 0V		87	105	kΩ
R_{PU}	Integrated pullup resistance	LSTX		8.7		kΩ
R _{PD}	Integrated pulldown resistance	LSRX		1.2		ΜΩ

TEST DIAGRAMS

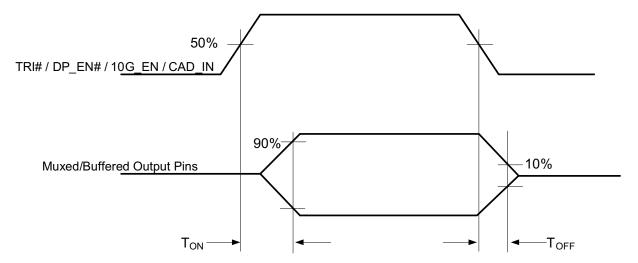
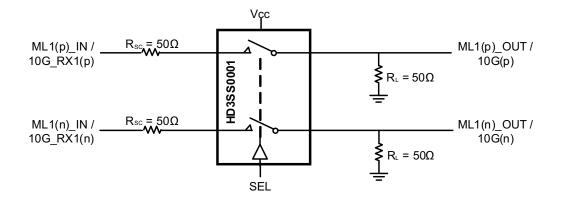
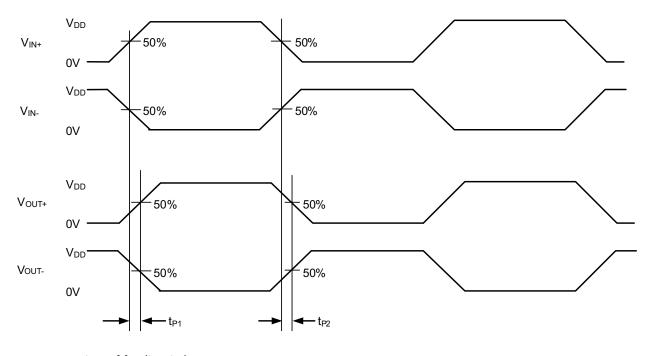




Figure 1. Control Line Change to Switched Signals

 $t_{PD} = Max(t_{p1}, t_{p2})$

 $t_{SK(O)}$ = Difference between t_{PD} for any two pairs of outputs

 $t_{SK(b-b)}$ = Difference between t_{P1} and t_{P2} of same pair

Figure 2. Propagation Delay and Skew

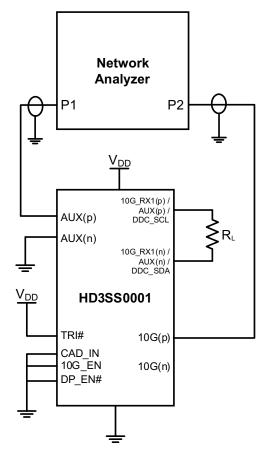


Figure 3. Off-Isolation Measurement Setup

PACKAGE OPTION ADDENDUM

18-Mar-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Diawing		Qty	(2)	(6)	(3)		(4/5)	
HD3SS0001RLLR	ACTIVE	VQFN	RLL	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3SS001	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

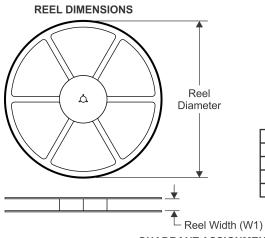
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

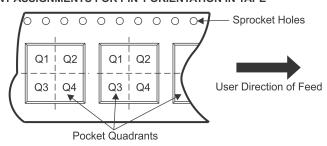
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



18-Mar-2014

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Mar-2014


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

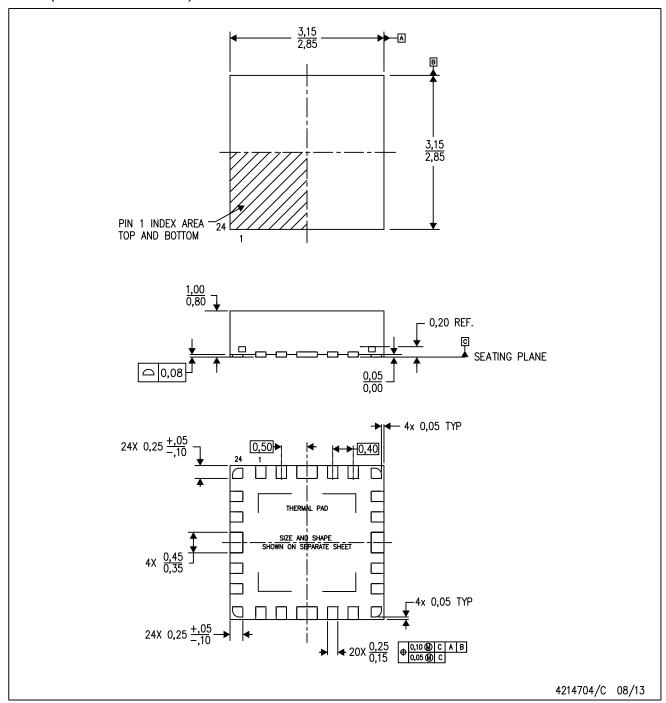
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
HD3SS0001RLLR	VQFN	RLL	24	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Mar-2014



*All dimensions are nominal

Device Package Typ		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
HD3SS0001RLLR	VQFN	RLL	24	3000	367.0	367.0	35.0	

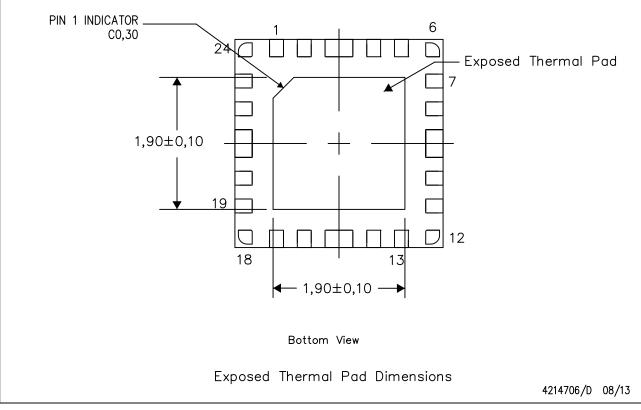
RLL (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

RLL (S-PVQFN-N24)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity