

General Description

The MC33063ADR2G is a monolithic control circuit containing the primary functions required for DC-to-DC converters. This device consists of an internal temperature compensated reference (1.25V), comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. The IC is specifically designed to be used in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

The MC33063ADR2G is available in DIP-8 and SOP-8(SOIC-8) package.

Features

- Operation from 3.0V to 40V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5A
- Output Voltage Adjustable
- Frequency Operation to 100kHz

Functional Block Diagram

• Precision 2% Reference

Applications

- Battery Chargers
- NICs / Switches / Hubs
- ADSL Modems
- Negative Voltage Power Supplies

Shenzhen HuaXuanYang Electronics CO.,LTD

Pin Configuration

Pin Description

Pin Number	Pin Name	Function Description	Pin Number	Pin Name	Function Description
1	SC	Switch collector	5	FB	Comparator inverting input
2	SE	Switch emitter	6	V _{cc}	Input voltage
3	СТ	Timing capacitor	7	lpk	lpk sense
4	GND	Ground	8	DC	Drive collector

Absolute Maximum Ratings (Ta=25°C)

Parameter Name	Symbol	Value	Unit	
Power Supply Voltage		Vcc	40	V
Comparator Input Voltage Range		V _{IR}	-0.3~40	V
Switch Collector Voltage		Vc(switch)	c(switch) 40	
Switch Emitter Voltage (VPin1=40V)		V _E (switch)	40	V
Switch Collector to Emitter Voltage		V _{CE} (switch)	40	V
Driver Collector Voltage		Vc(drive)	40	V
Driver Collector Current		Ic(drive)	100	mA
Switch Current		I _{SW}	1.5	А
Power Dissinction	DIP-8	D	1.25	W
	SOP-8(SOIC-8)		625	mW
Operating Ambient Temperature Range		Та	-0~70	°C
Storage Temperature Range		Tstg	-65~150	°C

Parameter Name	Symbol	Min	Тур	Max	Unit
OSCILLATOR					
Frequency (Vpin5=0V,CT=1.0nF, Ta=25°C)	fosc	24	33	42	kHz
Charge Current (Vcc=5.0~40V, Ta=25°C)	lchg	24	35	42	μA
Discharge Current (Vcc=5.0~40V, Ta=25°C)	Idischg	140	220	260	μA
Discharge to Charge Current Ratio	ldischg/lchg	5.2	6.5	7.5	
(Pin7 to Vcc, Ta=25°C)					
Current limit Sense Voltage)/ink(conce)	250	300	350	mA
(Ichg=Idischg, Ta=25°C)	vipk(sense)				
OUTPUT SWITCH					
Saturation Voltage, Darlington Connection	V/. (cot)		1.0	10	V
(ISW=1.0A, Pins 1,8 Connected)	V _{CE} (Sal)		1.0	1.3	v
Saturation Voltage, Darlington Connection	V. (cot)	0.45	0.45	0.7	V
(ISW=1.0A, Rpin 8=82 Ω to Vcc, Forced $\beta \approx 20$)	v _{CE} (Sat)		0.40		
DC Current Gain (ISW=1.0A,VCE=5.0V, Ta=25°C)	hFE	50	75		
Collector Off-State Current (VCE=40V)	Ic(off)		0.01	100	μA
COMPARATOR					
Threshold Voltage (Ta=25°C)	\/tb	1.225	1.25	1.275	V
Threshold Voltage (Ta=0~70°C)	VII	1.21		1.29	v
Threshold Voltage Line Regulation	Poglino		1.4	5.0	m\/
(Vcc=3.0~40V)	Itegiine		1.4	5.0	IIIV
Input Bias Current(Vin=0V)	I _{IB}		-20	-400	nA
TOTAL DEVICE					
Supply Current (Vcc=5.0~40V, CT=1.0nF,	lee			10	m۸
Pin7=Vcc, Vpin5>Vth, pin2=Gnd, Remaining Pins Open)				4.0	ШA

Electrical Characteristics (Unless otherwise noted ,Vcc=5.0V, Ta=0~70°C)

Characteristics Curves

Typical Application

1. Step-Up Converter

Test	Conditions	Results	
Line Regulation	Vin=8.0V~16V, Io=175mA	30mV=±0.05%	
Load Regulation	Vin=12V,Io=75mA~175mA	10mV=±0.017%	
Output Ripple	Vin=12V, Io=175mA	400mVpp	
Efficiency	Vin=12V, Io=175mA	87.7%	
Output Ripple With Optional Filter	Vin=12V, Io=175mA	40mVpp	

2. Step-Down Converter

Test	Conditions	Results	
Line Regulation	Vin=15V~25V, Io=500mA	12mV=±0.12%	
Load Regulation	Vin=25V,Io=50mA~500mA	3.0mV=±0.03%	
Output Ripple	Vin=25V, Io=500mA	120mVpp	
Short Circuit Current	$Vin=25V, R_L=0.1\Omega$	1.1A	
Efficiency	Vin=25V, Io=500mA	83.7%	
Output Ripple With Optional Filter	Vin=25V, Io=500mA	40mVpp	

3. Voltage Inverting Converter

Test	Conditions	Results	
Line Regulation	Vin=4.5V~6.0V, Io=100mA	3.0mV=±0.012%	
Load Regulation	Vin=5.0V,Io=10mA~100mA	0.022V=±0.09%	
Output Ripple	Vin=5.0V, Io=100mA	500mVpp	
Short Circuit Current	$Vin=5.0V, R_L=0.1\Omega$	910mA	
Efficiency	Vin=5.0V, Io=100mA	62.2%	
Output Ripple With Optional Filter	Vin=5.0V, Io=100mA	70mVpp	

Application Information

Calculation	Step-Up	Step-Down	Voltage-Inverting
t _{on} /t _{off}	$\frac{V_{out} + V_F - V_{in(min)}}{V_{in(min)} - V_{sat}}$	$\frac{V_{out} + V_{F}}{V_{in(min)} - V_{sat} - V_{out}}$	$\frac{ V_{out} + V_F}{V_{in} - V_{sat}}$
(t _{on} + t _{off})	<u>1</u> f	<u>1</u> f	<u>1</u>
t _{off}	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{\tau_{off}} + 1}$
ton	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$
CT	4.0 x 10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}
I _{pk(switch)}	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}} + 1\right)$	²¹ out(max)	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}} + 1\right)$
R _{sc}	0.3/lpk(switch)	0.3/Ipk(switch)	0.3/Ipk(switch)
L _(min)	$\left(\frac{(V_{in(min)} - V_{sat})}{I_{pk(switch)}}\right)^{t}$ on(max)	$\left(\frac{(V_{in(min)} - V_{sat} - V_{out})}{I_{pk(switch)}}\right)^{t}$ on(max)	$\left(\frac{(V_{in(min)} - V_{sat})}{I_{pk(switch)}}\right) t_{on(max)}$
Co	9 <mark>lout^ton V_{ripple(pp)}</mark>	$\frac{I_{pk(switch)}(t_{on} + t_{off})}{8V_{ripple(pp)}}$	9 Vripple(pp)

Vsat = Saturation voltage of the output switch

V_F = Forward voltage drop of the output rectifier

The following power supply characteristics must be chosen:

Vin — Nominal input voltage

Vout — Desired output voltage , |
$$Vout$$
 |= 1.25 × (1 + $\frac{R2}{R1}$)

- lout Desired output current
- fmin Minimun desired output switching frequency at the selected values of Vin and Io
- Vripple(pp) Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

DIP-8

SOP-8(SOIC-8)

Attention

• Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.

■ HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.

• Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could

give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

• No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production.
HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.