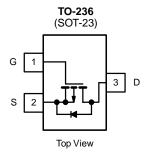
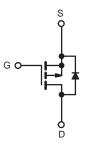


P-Channel 60-V (D-S) MOSFET


PRODUCT SUMMARY				
V _{DS} (V)	- 60			
$R_{DS(on)}\left(\Omega\right)$	V _{GS} = - 10 V	0.04		
Q _g (Max.) (nC)	12			
Q _{gs} (nC)	3.8			
Q _{gd} (nC)	5.1			
Configuration	Single			


FEATURES

- · Isolated Package
- High Voltage Isolation = 2.5 kV_{RMS} (t = 60 s; f = 60 Hz

- Sink to Lead Creepage Distance = 4.8 mm
- P-Channel
- 175 °C Operating Temperature
- · Dynamic dV/dt Rating
- · Low Thermal Resistance
- Lead (Pb)-free Available

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS T	_C = 25 °C, u	nless otherw	ise noted		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V_{DS}	- 60	V	
Gate-Source Voltage			V_{GS}	± 20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Continuous Drain Current	V _{GS} at - 10 V	T _C = 25 °C	I _D	- 5.2	
	VGS at - 10 V	T _C = 100 °C		- 3.8	Α
Pulsed Drain Current ^a			I _{DM}	- 21	
Linear Derating Factor				0.18	W/°C
Single Pulse Avalanche Energy ^b			E _{AS}	120	mJ
Repetitive Avalanche Current ^a			I _{AR}	- 5.2	Α
Repetitive Avalanche Energy ^a			E _{AR}	2.7	mJ
Maximum Power Dissipation	T _C = 25 °C		P_{D}	27	W
Peak Diode Recovery dV/dtc			dV/dt	- 4.5	V/ns
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 175	°C	
Soldering Recommendations (Peak Temperature) for 10 s				300 ^d	7
Mounting Torquo	6 22 or 1	6 22 or M2 corour		10	lbf ⋅ in
Mounting Torque	6-32 or M3 screw			1.1	N · m

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. V_{DD} = 25 V, starting T_J = 25 °C, L = 5.0 mH, R_G = 25 Ω , I_{AS} = 5.3 A (see fig. 12). c. I_{SD} < 6.7 A, dI/dt < 90 A/µs, V_{DD} \leq V_{DS} , V_{DS} = 175 °C.

- d. 1.6 mm from case.

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient	R _{thJA}	-	65	°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-	5.5	C/VV	

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	0 V, I _D = - 250 μA	- 60	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D = - 1 mA	-	- 0.060	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V _{GS} , I _D = - 250 μA	- 1.0	-	- 2.5	V
Gate-Source Leakage	I _{GSS}	,	V _{GS} = ± 20 V	-	-	± 100	nA
Zana Cata Valtana Duain Commant		V _{DS} = -60 V, V _{GS} = 0 V		i	-	- 100	μΑ
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = -250 \text{ μA}$ Reference to 25 °C, $I_{D} = -1 \text{ mA}$ $V_{DS} = V_{GS}, I_{D} = -250 \text{ μA}$ $V_{GS} = \pm 20 \text{ V}$ $V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -48 \text{ V}_{GS} = 0 \text{ V}, T_{J} = 150 \text{ °C}$ $V_{GS} = -10 \text{ V}$ $I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -30 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -25 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ $V_{DS} = -30 \text{ V}, I_{D} = -3.2 \text{ A}^{b}$ V_{DS	i	-	- 500		
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = - 10 V	I _D = - 3.2 A ^b	i	0.05	-	Ω
Forward Transconductance	9 _{fs}	V _{DS} =	- 25 V, I _D = - 3.2 A ^b	1.6	-	-	S
Dynamic		•					
Input Capacitance	C _{iss}		Voc = 0 V	-	270	-	
Output Capacitance	C _{oss}		$V_{DS} = -25 \text{ V},$		170	-	_
Reverse Transfer Capacitance	C _{rss}	f = 1	.0 MHz, see fig. 5	-	31	-	pF
Drain to Sink Capacitance	С		f = 1.0 MHz	-	12	-	
Total Gate Charge	Qg			i	-	12	
Gate-Source Charge	Q _{gs}	V _{GS} = - 10 V	$I_D = -4.7 \text{ A}, V_{DS} = -48 \text{ V},$	i	-	3.8	nC
Gate-Drain Charge	Q _{gd}	1	See fig. 6 dilla 16	-	-	5.1	
Turn-On Delay Time	t _{d(on)}			-	11	-	
Rise Time	t _r	V _{DD} =	$-30 \text{ V}, I_D = -4.7 \text{ A},$	-	63	-	
Turn-Off Delay Time	t _{d(off)}	$R_G = 24 \Omega$, $R_D = 4.0 \Omega$,		9.6	-	ns	
Fall Time	t _f			-	31	-	1
Internal Drain Inductance	L _D	1 '		-	4.5	-	
Internal Source Inductance	L _S	, ,			7.5	-	- nH
Drain-Source Body Diode Characteristic	s	1				I.	
Continuous Source-Drain Diode Current	I _S	showing the		ī	-	- 5.2	A
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	- 21	A .
Body Diode Voltage	V_{SD}	T _J = 25 °C,	$I_S = -5.2 \text{ A}, V_{GS} = 0 \text{ V}^b$	-	-	- 5 .5	V
Body Diode Reverse Recovery Time	t _{rr}	$T_J = 25 \text{ °C}, I_F = -4.7 \text{ A, dl/dt} = 100 \text{ A/µs}^b$		ı	80	160	ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	0.096	0.19	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	ırn-on time is negligible (turn-	on is don	ninated by	L _S and I	L _D)

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width $\leq 300~\mu s;$ duty cycle $\leq 2~\%.$

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

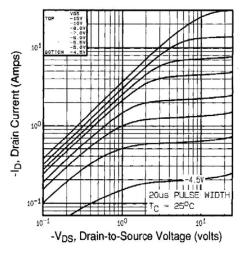


Fig. 1 - Typical Output Characteristics, T_C= 25 °C

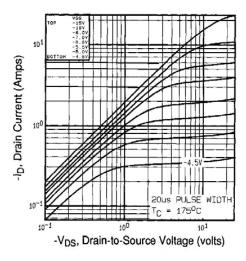


Fig. 2 - Typical Output Characteristics, T_C= 175 °C

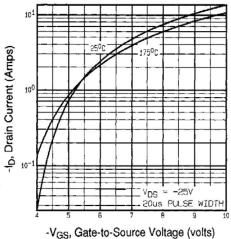


Fig. 3 - Typical Transfer Characteristics

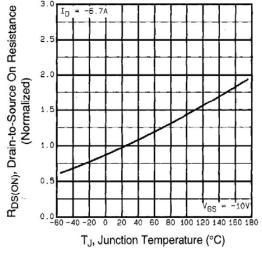


Fig. 4 - Normalized On-Resistance vs. Temperature

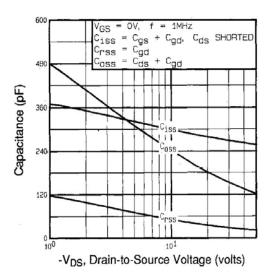


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

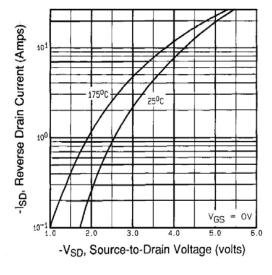


Fig. 7 - Typical Source-Drain Diode Forward Voltage

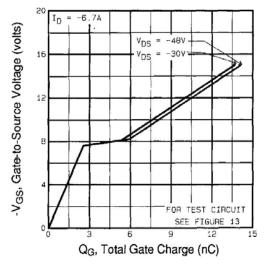


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

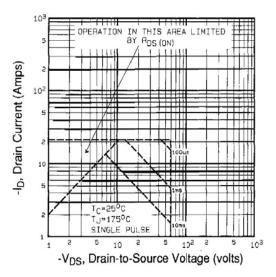


Fig. 8 - Maximum Safe Operating Area

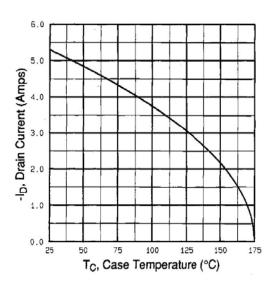


Fig. 9 - Maximum Drain Current vs. Case Temperature

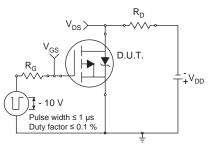


Fig. 10a - Switching Time Test Circuit

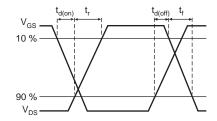


Fig. 10b - Switching Time Waveforms

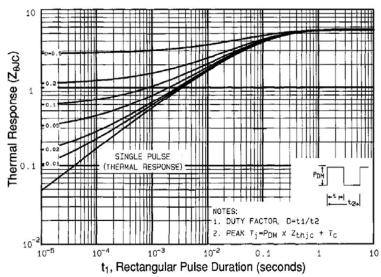


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

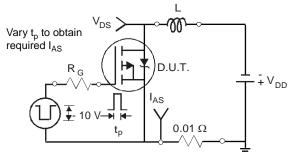


Fig. 12a - Unclamped Inductive Test Circuit

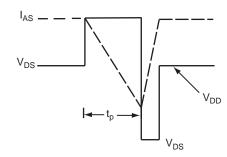


Fig. 12b - Unclamped Inductive Waveforms

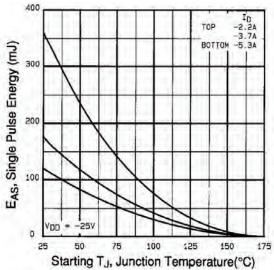


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

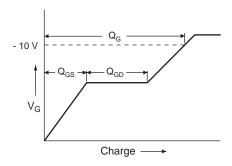
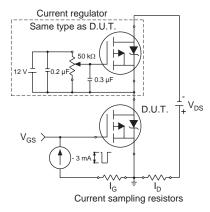
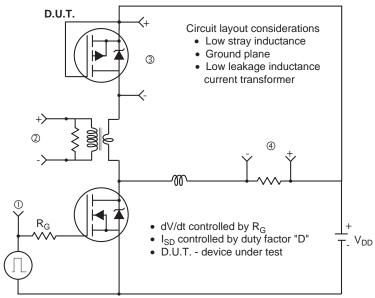
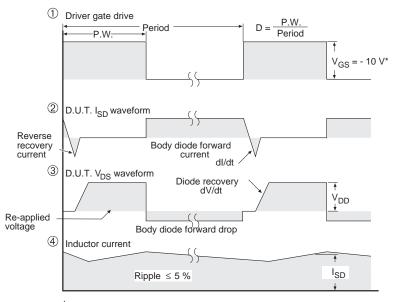


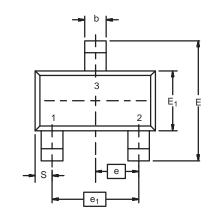
Fig. 13a - Basic Gate Charge Waveform

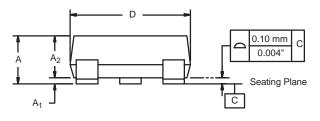



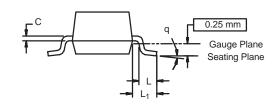

Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

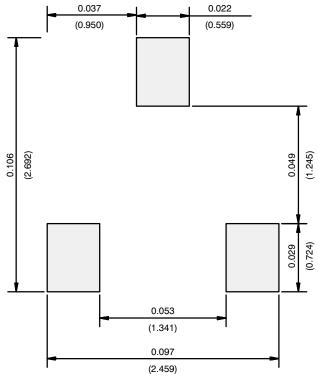
• Compliment N-Channel of D.U.T. for driver




* $V_{GS} = -5 \text{ V}$ for logic level and -3 V drive devices


Fig. 14 - For P-Channel

SOT-23 (TO-236): 3-LEAD



Dim	MILLIM	IETERS	INCHES		
	Min	Max	Min	Max	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
С	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95 BSC		0.0374 Ref		
e ₁	1.90 BSC		0.0748 Ref		
L	0.40	0.60	0.016	0.024	
L ₁	0.64 Ref		0.025 Ref		
S	0.50 Ref		0.020 Ref		
q	3°	8°	3°	8°	

DWG: 5479

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.