ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Product data sheet

1. **General description**

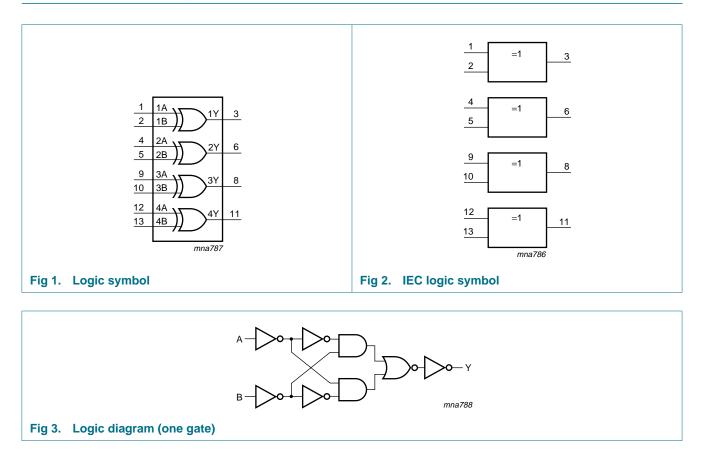
The 74LV86 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC86 and 74HCT86.

The 74LV86 provides a quad 2-input exclusive-OR function.

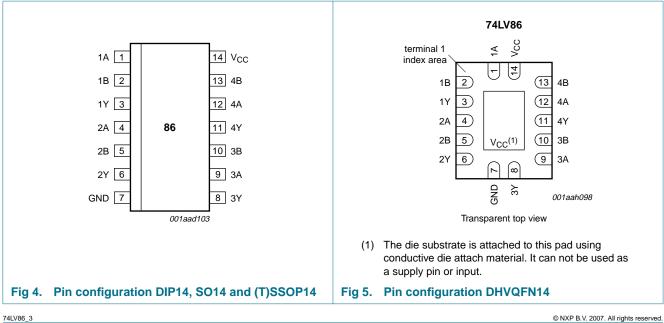
2. **Features**

- Wide operating voltage: 1.0 V to 5.5 V
- Optimized for low voltage applications: 1.0 V to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical output ground bounce < 0.8 V at V_{CC} = 3.3 V and T_{amb} = 25 °C
- Typical HIGH-level output voltage (V_{OH}) undershoot: > 2 V at V_{CC} = 3.3 V and $T_{amb} = 25 \ ^{\circ}C$
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C

Ordering information 3.


Type number	Package							
	Temperature range	Name	Description	Version				
74LV86N	–40 °C to +125 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1				
74LV86D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1				
74LV86DB	–40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1				
74LV86PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1				
74LV86BQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1				

74LV86


Quad 2-input exclusive-OR gate

4. Functional diagram

5. Pinning information

5.1 Pinning

Product data sheet

Table 2.	Pin description	
Symbol	Pin	Description
1A	1	data input
1B	2	data input
1Y	3	data output
2A	4	data input
2B	5	data input
2Y	6	data output
GND	7	ground (0 V)
3Y	8	data output
ЗA	9	data input
3B	10	data input
4Y	11	data output
4A	12	data input
4B	13	data input
V _{CC}	14	supply voltage

5.2 Pin description

6. Functional description

Table 3.Function table

H = HIGH voltage level; L = LOW voltage level

Input	Output	
nA	nB	nY
L	L	L
L	Н	н
Н	L	н
Н	Н	L

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5$ V or $V_{I} > V_{CC} + 0.5$ V	<u>[1]</u> _	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±50	mA
lo	output current	$V_{O} = -0.5 \text{ V}$ to ($V_{CC} + 0.5 \text{ V}$)	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$			
	DIP14 package		[2] _	750	mW
	SO14 package		<u>[3]</u>	500	mW
	(T)SSOP14 package		<u>[4]</u> _	500	mW
	DHVQFN14 package		<u>[5]</u> _	500	mW

Table 4. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] P_{tot} derates linearly with 12 mW/K above 70 °C.

[3] P_{tot} derates linearly with 8 mW/K above 70 °C.

[4] Ptot derates linearly with 5.5 mW/K above 60 °C.

[5] P_{tot} derates linearly with 4.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage[1]		1.0	3.3	5.5	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.0 V to 2.0 V	-	-	500	ns/V
		V_{CC} = 2.0 V to 2.7 V	-	-	200	ns/V
		V_{CC} = 2.7 V to 3.6 V	-	-	100	ns/V
		V_{CC} = 3.6 V to 5.5 V	-	-	50	ns/V

[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to V_{CC} = 5.5 V, but LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

9. Static characteristics

Table 6.Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	85 °C	–40 °C to	• +125 °C	Unit	
			Min	Typ <mark>[1]</mark>	Max	Min	Max	1	
VIH	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V	
		$V_{CC} = 2.0 V$	1.4	-	-	1.4	-	V	
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V	
		V_{CC} = 4.5 V to 5.5 V	$0.7V_{CC}$	-	-	$0.7V_{CC}$	-	V	
V _{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V	
		$V_{CC} = 2.0 V$	-	-	0.6	-	0.6	V	
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V	
		V_{CC} = 4.5 V to 5.5 V	-	-	$0.3V_{CC}$	-	$0.3V_{CC}$	V	
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$							
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 1.2 \ \text{V}$	-	1.2	-	-	-	V	
		$I_{O} = -100 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.8	2.0	-	1.8	-	V	
		I_{O} = $-100~\mu\text{A};~V_{CC}$ = 2.7 V	2.5	2.7	-	2.5	-	V	
		I_O = $-100~\mu\text{A};~V_{CC}$ = 3.0 V	2.8	3.0	-	2.8	-	V	
		I_O = $-100~\mu\text{A};~V_{CC}$ = 4.5 V	4.3	4.5	-	4.3	-	V	
		$I_O = -6$ mA; $V_{CC} = 3.0$ V	2.4	2.82	-	2.2	-	V	
		I_O = -12 mA; V_{CC} = 4.5 V	3.6	4.2	-	3.5	-	V	
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$							
		I_O = 100 $\mu A; V_{CC}$ = 1.2 V	-	0	-	-	-	V	
		I_O = 100 $\mu A; V_{CC}$ = 2.0 V	-	0	0.2	-	0.2	V	
		I_{O} = 100 $\mu A;$ V_{CC} = 2.7 V	-	0	0.2	-	0.2	V	
		I_O = 100 $\mu A; V_{CC}$ = 3.0 V	-	0	0.2	-	0.2	V	
		I_O = 100 $\mu A; V_{CC}$ = 4.5 V	-	0	0.2	-	0.2	V	
		$I_{O} = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.25	0.40	-	0.50	V	
		I_{O} = 12 mA; V_{CC} = 4.5 V	-	0.35	0.55	-	0.65	V	
lı	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	1.0	-	1.0	μA	
сс	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	20.0	-	40	μA	
VI _{CC}	additional supply current	per input; V _I = V _{CC} – 0.6 V; V _{CC} = 2.7 V to 3.6 V	-	-	500	-	850	μΑ	
4	input capacitance		-	3.5	-	-	-	pF	

[1] Typical values are measured at T_{amb} = 25 °C.

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND = 0 V; For test circuit see Figure 7.

Symbol	Parameter	Conditions		-40	°C to +85	5 °C	–40 °C to +125 °C		Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	nA, nB to nY; see Figure 6	[2]						
		V _{CC} = 1.2 V		-	70	-	-	-	ns
		$V_{CC} = 2.0 V$		-	24	32	-	41	ns
		$V_{CC} = 2.7 V$		-	18	24	-	30	ns
		V_{CC} = 3.0 V to 3.6 V; C_L = 15 pF	[3]	-	11	-	-	-	ns
		V_{CC} = 3.0 V to 3.6 V	[3]	-	13	19	-	24	ns
		V_{CC} = 4.5 V to 5.5 V		-	-	16	-	20	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f _i = 1 MHz; V _I = GND to V _{CC}	<u>[4]</u>	-	30	-	-	-	pF

[1] All typical values are measured at $T_{amb} = 25$ °C.

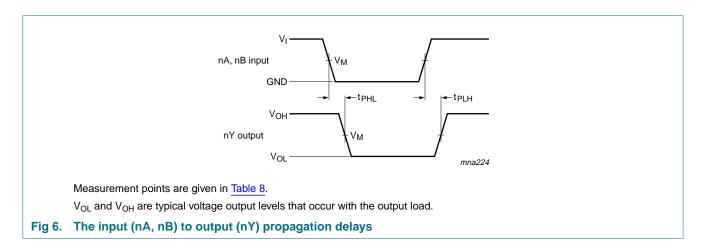
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V).

[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

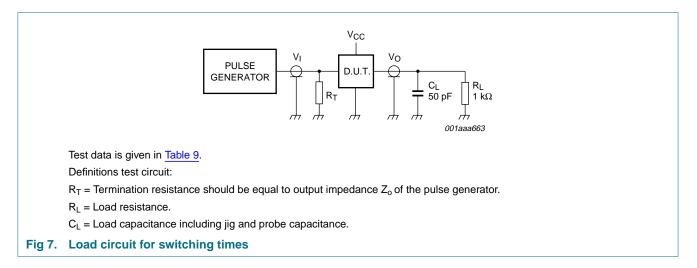
 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_o) \text{ where:}$

 $f_i = \text{input}$ frequency in MHz, $f_o = \text{output}$ frequency in MHz


 C_{L} = output load capacitance in pF

 V_{CC} = supply voltage in V

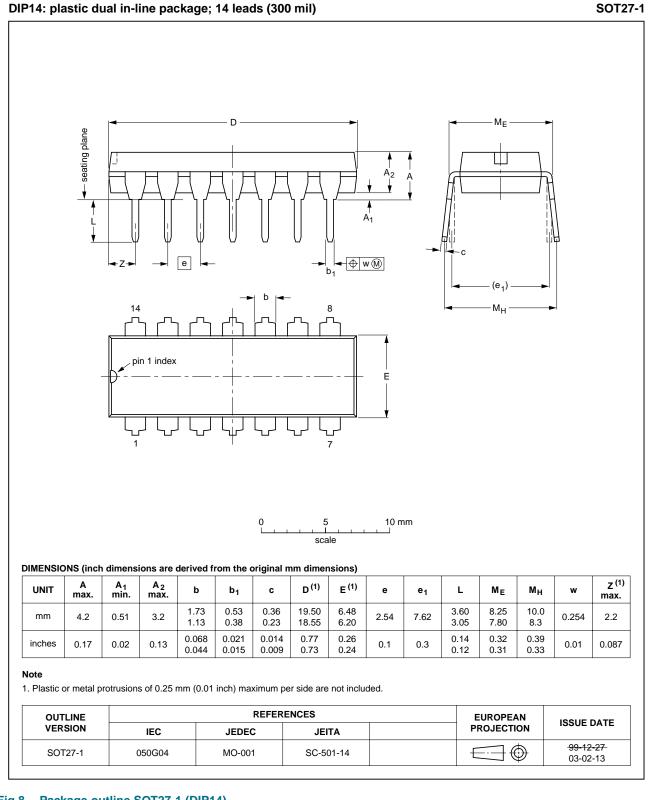
N = number of inputs switching


 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

11. Waveforms

Table 8.Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
< 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V to 3.6 V	1.5 V	1.5 V
≥ 4.5 V	0.5V _{CC}	0.5V _{CC}


Table 9. Test data

Supply voltage	Input	Input			
V _{cc}	VI	t _r , t _f			
< 2.7 V	V _{CC}	≤ 2.5 ns			
2.7 V to 3.6 V	2.7 V	≤ 2.5 ns			
≥ 4.5 V	V _{CC}	≤ 2.5 ns			

74LV86_3

Quad 2-input exclusive-OR gate

12. Package outline

Fig 8. Package outline SOT27-1 (DIP14)

74LV86_3

Product data sheet

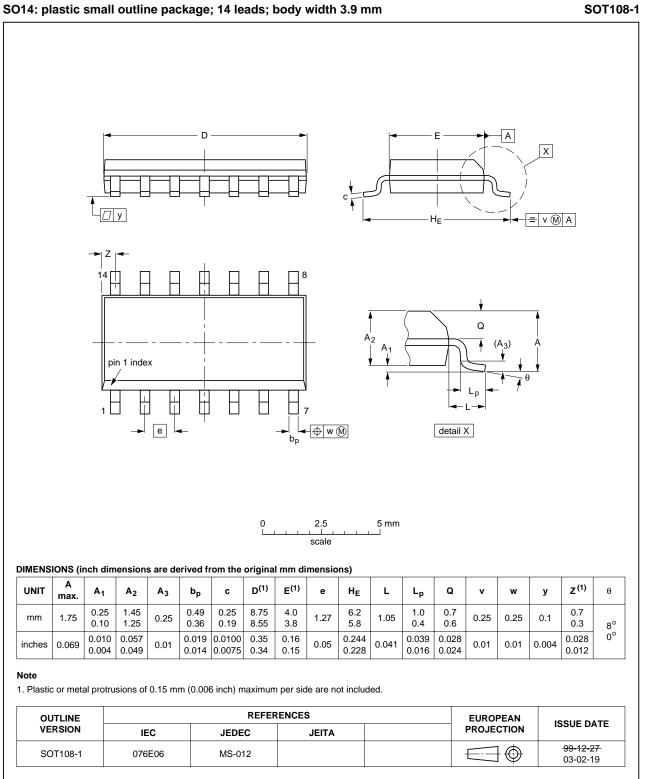
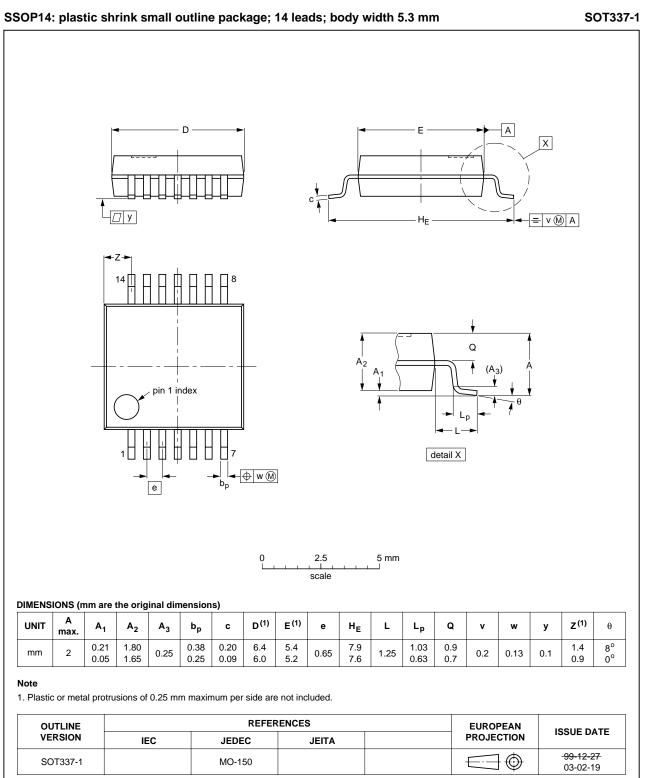



Fig 9. Package outline SOT108-1 (SO14)

74LV86_3

Product data sheet

Quad 2-input exclusive-OR gate

Fig 10. Package outline SOT337-1 (SSOP14)

74LV86_3

Product data sheet

Quad 2-input exclusive-OR gate

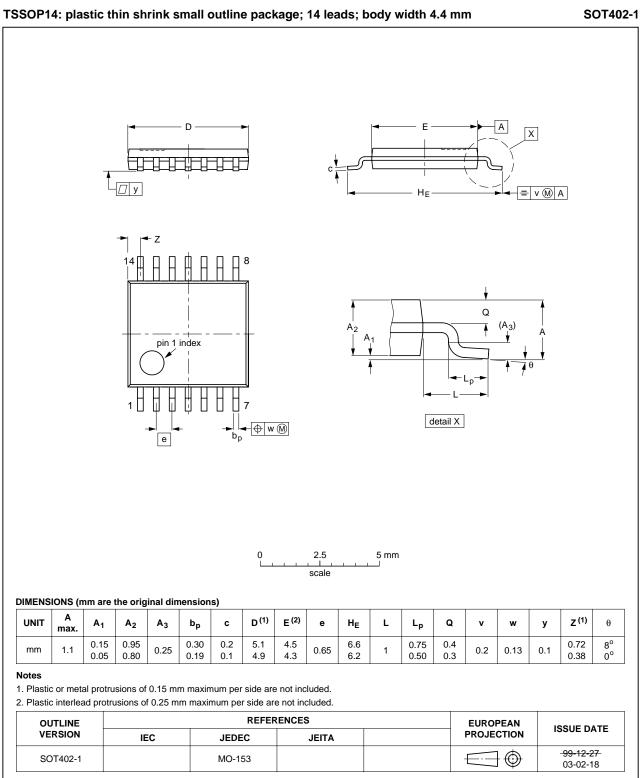
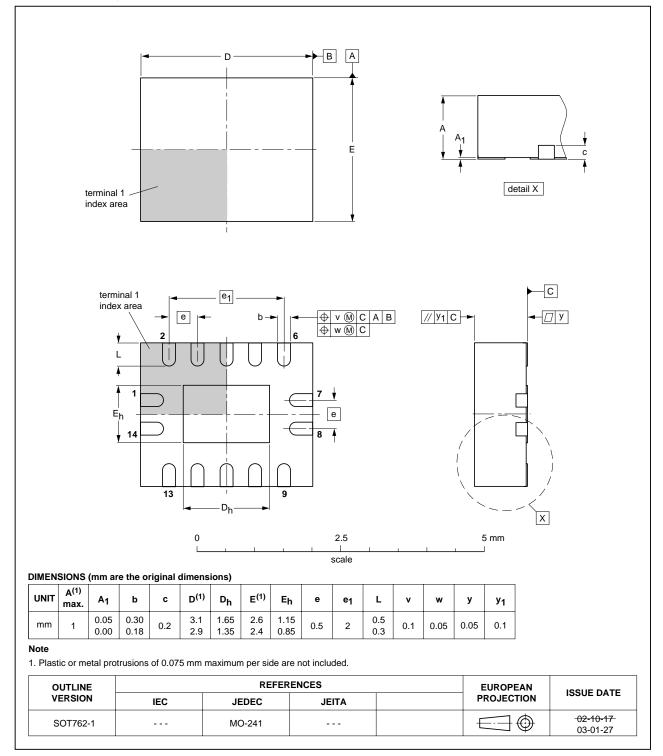



Fig 11. Package outline SOT402-1 (TSSOP14)

74LV86_3

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 12. Package outline SOT762-1 (DHVQFN14)

74LV86_3

Product data sheet

13. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LV86_3	20071127	Product data sheet	-	74LV86_2		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidel of NXP Semiconductors. 					
	 Legal texts ha 	ve been adapted to the new	company name where	e appropriate.		
	 <u>Section 3</u>: DH 	VQFN14 package added.				
	 <u>Section 8</u>: der 	ating values added for DHV	QFN14 package.			
	 <u>Section 12</u>: οι 	utline drawing added for DH	/QFN14 package.			
74LV86_2	19980420	Product specification	-	74LV86_1		
74LV86_1	19970203	Product specification	-	-		

15. Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

17. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning 2
5.2	Pin description 3
6	Functional description 3
7	Limiting values 3
8	Recommended operating conditions 4
9	Static characteristics 5
10	Dynamic characteristics 6
11	Waveforms 7
12	Package outline 8
13	Abbreviations 13
14	Revision history 13
15	Legal information 14
15.1	Data sheet status 14
15.2	Definitions 14
15.3	Disclaimers
15.4	Trademarks 14
16	Contact information 14
17	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 November 2007 Document identifier: 74LV86_3

