

MONOLITHIC CERAMIC CAPACITOR

GRM Series for General Electronic Equipment

■FEATURES

- 1. Terminations are made of metal highly resistant to migration.
- The GRM series is a complete line of chip ceramic capacitors in 6.3V, 10V, 16V, 25V, 50V, 100V, 200V and 500V ratings. These capacitors have temperature characteristics ranging from C0∆ to Y5V.
- A wide selection of sizes is available, from the miniature GRM36 (L×W×T : 1.0×0.5×0.5mm) to the larger sized GRM44-1 (L×W×T : 5.7×5.0×2.0mm).
 GRM39, GRM40 and GRM42-6 types are suited to flow and reflow soldering.
 GRM36, GRM42-2 and larger types are suited to reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placements on PCBs.
- The GRM series is available in both paper and plastic embossed tape and reel packaging for automatic placement. Bulk case packaging is also available. (GRM 36, GRM39, GRM40 (T : 0.6, 1.25))

■APPLICATION

General electronic equipment.

■PART NUMBERING

(*Please specify the part number when ordering)

OTYPE AND DIMENSIONS

Type (EIA Code)	L	W	т	е	g min.
GRM36 (0402)	1.0±0.05	0.5±0.05	0.5±0.05	0.15 to 0.3	0.4
GRM39* (0603)	1.6±0.1	0.8±0.1	0.8±0.1	0.2 to 0.5	0.5
			0.6±0.1		
GRM40 (0805)	2.0±0.1	1.25±0.1	0.85±0.1	0.2 to 0.7	0.7
			1.25±0.1		
	3.2±0.15	1.6±0.15	0.85±0.1		
GRM42-6 (1206)	3.210.13	1.0±0.15	1.15±0.1	0.3 to 0.8	1.5
	3.2±0.2	1.6±0.2	1.6±0.2		
			0.85±0.1		
			1.15±0.1		
GRM42-2 (1210)	3.2±0.3	2.5±0.2	1.35±0.15	0.3 min.	1.0
			1.8±0.2		
			2.5±0.2		
GRM43-2 (1812)	4.5±0.4	3.2±0.3	2.0 max.	0.3 min.	2.0
GRM44-1 (2220)	5.7±0.4	5.0±0.4	2.0 max.	0.3 min.	2.0
	*Bulk (case packa	ging is L=1.6	±0.07, W,T=	0.8±0.07

2TEMPERATURE CHARACTERISTICS

• Temperature Compensating Type

				3 . 1				
Code	COG	C0H	P2H	R2H	S2H	T2H	U2J	SL
Temp. range	-55 to	+125℃			-55 to	+85℃		
Temp. coeff. (ppm/℃)	0±30	0±60	-150±60	-220±60	-330±60	-470±60	-750±120	+350 to -1000

High Dielectric Constant Type

-		• •		
Code	X5R	X7R	Z5U	Y5V
Temp. range	–55 to +85℃	-55 to +125℃	+10 to +85℃	-30 to +85℃
Cap. change (%)	±15	±15	+22 -56	+22 -82

GCAPACITANCE (Ex.)

Code	Capacitance (pF)	Code	Capacitance (pF)
0R5	0.5	100	10
R75	0.75	101	100
010	1	103	10,000

4CAPACITANCE TOLERANCE

-		
Code	Tol.	Capacitance range
С	±0.25pF	10pE and balaw
D	±0.5 pF	10pF and below
J	±5%	
K	±10%	More than 10pF
М	±20%	More than Topp
Z	+80, -20%	

GRATED VOLTAGE

Code	DC Rated voltage (V)
6.3	6.3
10	10
16	16
25	25
50	50
100	100
200	200
500	500

PACKAGING CODE

Code	Packaging
PB	Bulk packaging in a bag
PT	Tape carrier packaging
PC	Bulk case packaging

1

FOR FLOW AND REFLOW SOLDERING

High Dielectric Constant Type 50V/25V/16V/10V/6.3V Char. X7R/X5R

<u>P</u>	ype (EIA Code) Char.			RM30 7R	6 (04	102)	*4 5R	G		139 (0 X7R)3)						GRN X7I		(08	305)				X	D			X		VI42-	6 (1	206)) X5	D	_
<u> </u>	Volt.			1	10			-				10							Ì	_	. ,											10				
Cap.		50	25	16	10	16	10	50) 2	25 10	6	10		50			25				16		10	,	10	6.3	5	0	2	5	16	10	16	10	0	6.3
L			L		ļ	ļ	L		Ļ.					L	L				<u> </u>									L	L	L		L	!	1		L
L	220		L			l	L		LL.					L	L	_L			<u> </u>								L	L	L	L		I				
	270					[T															~~							, T		~ //		A N I'		,	
	330					1	Γ		[[.										IIC	Kľ	NE:	55	AN	DI	PAG	CK.	AG	ING	ווי	PE	.5/(20/	AN	ΤIΤ	Y :	
	390								IT								T										_		Т	apiı	na					
	470				+	†	t		<u> </u>				••	+	<u>+</u>			Ту	ре		Thi	ickr	iess	: T	(mi	m)	Bu				78mr	nı		Case		
	560	Hŀ			+	+	+	-+	╞┝╴		- +-		•• •	+			-1-1	,							•	í	(pcs./l	oag)		reel)	*2	(p)CS./	/case	e)	
	680	H				-	+	+	╟╴	-	+				+	-					_											-				_
	820	╞┤┝			+	+	+	- -	┝┝╴					+	+			GRI	136	6			: 0.	5±(0.05)	1,0	00	1	0,00)0		50,0	000	-	
		H			+	+	+		┝┝╴				•• •	+	+		(GRI	N3 9	9	Γ		: 0.	8±().1* [;]	3	1,0	00		4,00	00		15,0	000	·	
	1,000	⊢⊦⊦	-			-	-	+	╟	-	+				-	-	╢				_					-						+				_
	1,200	╞┥┝				+	+		┝┝╴					+	<u></u>								: 0.	6±().1		1,0	00		4,00	00		10,0	200	·	
	1,500	╞┥┝				+	<u>+</u>	- -	┝┝╴					+	<u></u>		(GRI	Л 40	b		\square	: 0.	85±	±0.1		1,0	00		4,00	00		_	_		
	1,800						-	4	\parallel		_		┥╽		<u> </u>		4									_				-		+				_
L	2,200		Ļ		ļ	ļ	Ļ		LL.					L	L								: 1.	251	E0.1		1,0	00		3,00)0		5,0	000		
L	2,700		L			L	L		LL.					1	L	_L					P		: 0.	851	±0.1		1,0	00		4,00	00		_	_	7_	
	3,300					L			Ш											-												+			-[]	
	3,900										T						G	RM	42-	-6			: 1.	15±	±0.1		1,0	00		3,00)0		-	-		
[4,700			1	1	Τ	T		LL.		-1		11	1	[Л	$\overline{\}$: 1.	6+0	12		1,0	00		2,00	00		_	_		
	5,600		11		1	†	†						••	+	<u>†</u>						6	223								<i>'</i>						
	6,800		† -				\vdash		H		+						t																	ques		
	8,200		┝┸═┖		+	+	+		╞┝╴				•• •	+	+		- -	1	ī.	ī	I.	1	1	*3	3 Bi	JIK (case	e pa	cka	ging	IS	1 = 0	.8±0	0.07		
	10,000				+	+	+		╞┝╴				•• •	+	+				+	-+-	+					+	+	+	+				+	++		
			-			łm	+	+	╟	-	+		-		+	+	-		+	+	+		-	-		-						-	\vdash	$\left \right $		
	12,000					++	+	-+	┝┝╴					+	<u></u>				+	-+-	+						+	+	<u> </u>					++		
						+!	+		┝┝╴					+					+	-+-	+							+	<u> </u>					++		
	18,000					┦╽			Ц,	_	_		┥╽		<u> </u>					_				_								<u> </u>				
	22,000	L	<u> </u>		-	ļШ	Ļ		_	H			Ш	+ 1-21	Ļ				4	_+-	+							<u> </u>	L	L			!	↓		L
L	27,000	L	L			ļ	L			Ц.,				10	L	_			<u> </u>								L	L	L	L		I	ļ!	↓		
	33,000													IØ																						
	39,000																																			
	47,000		[11 [Τ	T			ΠT	П						TØ		T1	IT								[[[[1			
	56,000					1	T			- 1	Π						TB		11	1								T								
	68,000						Ħ		T		H						tØ			1	at															
	82,000				+	†	†I		-		H			+		*6		T	+	-†₿	đt						10	†				(+	tt		
	100,000				+	†	†I		+		H			+	t-	*6			+	-++	3t							+	+				++	††		
	120,000		-						+	15	Ŧ	-	5			-			+	+	4						LEA.									
	150,000				+	+	+						5	+	+				+	-+-	+							╞	+				<u> </u>	++		
						+	+						5	+	+				+	-+-	+						+	┼╹┸	<u> </u>				+'	++		
<u> </u>	180,000		-			-	+		+	-	+	-	5	_	-	-			-	+			\rightarrow	_		-						<u> </u>		$\left \right $		_
	220,000	<u> </u>	<u> </u>			+	<u> </u>							+	<u>+</u>				+		4		┥┝┝			<u> </u>	+	+	<u> </u>				<u></u> !	<u> </u>		
	270,000	Ļ	<u> </u>			<u>+</u>	<u> </u>							+	Ļ				<u> </u>	}	21		┥╟				<u> </u>	<u> </u>	<u> </u>				ļ!	<u> </u>		
	330,000																															<u> </u>				
L	390,000	L	L			l	L		_L.					L	L	_L			<u> </u>		_						L	L	LØ.	L		I				
L	470,000																				2[LØ							
	560,000				[[[Γ		1			[[[[1	_		-1					1Ø				1			
	680,000																												TØ							
	820,000			1	1	†	t		- - '		1			†	F			1	1	-+'	-+					1	1	†								
	1,000,000			1	+	†	t	-+	-		-+			+	†			1	+	-+-	+				Ø	†	+	†	<u>+</u>			i		††		
	1,500,000				1	1	+	+	+	+	+			1		+	+		+	+	+		-				-							\vdash		_
	2,200,000	+			+	+	+	-+	+		-+			+	+				+	-+-	+						+	+	+					7		
					+	+	+							+	+				+	-+-	+						+	+	+						8	
	3,300,000	-	-		-	-	-	-	+	-	+				-	-	-	-	+	+	+		-	_		-					-	<u> </u>		╎┛┛┤		
	3,900,000	<u></u>				+	+							+	<u>+</u>				+	-+-	+						+	+	<u> </u>	⊢ −−			<u> </u> !	<u> </u>		
	4,700,000	<u> </u>	 			+	<u> </u>							+	<u> </u>				<u> </u>	-+-	+						+	+	<u> </u>	<u> </u>			<u> </u>	<u> </u>		
	5,600,000					L	1	_																								<u> </u>		\square		
L	6,800,000	L	L			ļ	L							L	L				<u> </u>								L	L	L	L	L			[]		
L	8,200,000					1	1]			1	L				1		T	_								L		L				_
	10,000,000			1	1	T	t							t	Γ			1	1	-†-	†					I	Τ	Γ	F			,	[[]		

*4 GRM36 series is suited to only reflow soldering.

*5 Only for taping

*6 Type : GRM40-034 (L : 2±0.15, W : 1.25±0.15, T : 1.25±0.15)

*7 L : 3.2±0.2, W : 1.6±0.2, T : 1.15±0.15

*8 Type : GRM42-631 (L : 3.2 \pm 0.2, W : 1.6 \pm 0.2, T : 1.3 $^{+0}_{-0.2}$)

■CAPACITANCE TOLERANCE

X7R/X5R Characteristics

K : ±10% (E12 Series)

M: ±20% (E6 Series)

■CHARACTERISTICS (REFERENCE DATA)

- SELECTION OF CERAMIC CAPACITORS When selecting capacitors, consider the voltage characteristics (AC & DC) and aging characteristics.
- Capacitance-Temperature Characteristics

· Capacitance Change- Aging

• Capacitance- DC Voltage Characteristics

• Capacitance- AC Voltage Characteristics

• Impedance- Frequency Characteristics

No.C02E5.pdf 99.8.13

Process	Cautions				trol Points			Referen	ce Data
1. Storage of	Chip monolithic ceramic capacitors	-			ambient temp	erature of 5-4	0°C and an	Data 1	
Chips	(chips) can experience degradation		umidity of 20-					Solderab	oility
	of termination solderability when	-			ths or more h	ave elapsed,	check		
	subjected to high temperature or		ty before use						
	humidity, or if exposed to sulfur or					the minimum p	0		
	chlorine gases.		-	. After unpac	king, re-seal	promptly or st	ore with a		
		desiccant.							
					-	tor to prevent	mechanical		
2. Circuit	These capacitors on this catalog are	Cracking II	nside of the c	eramic dielec	the due to its	own weight.			
Design	not safety recognized products.								
3. PCB	Unlike leaded components, chip	When des	ianina substr	ates take lan	d natterns ar	d dimensions	into consider	ation Data 2	
Design	components are susceptible to		te the possibi					Board be	endina
· g. ·	flexing stresses since they are					olgilli		strength	
	mounted directly on the substrate.	• [Pattern F	orms]					solder fill	
	They are also more sensitive to		· · · ·	Incorrect		Corr	oct		0
	mechanical and thermal stresses					CON	eci	Data 3	
	than leaded components.	dift. %	0	_L	ead wire	Solder re	sist-	Tempera	iture
	Excess solder fillet height can	of c led	ent	~		£	-	cycling fo	or solde
	multiply these stresses and cause	ng			3			fillet heig	ht
	chip cracking.	Placing of chip components and leaded	l l	Ц					
		σ O D	ō					Data 4	
		Ð	1	Chassis Solder (Gro	und)			Board be	-
		is is	F		una)	Solder resist		strength	
		o GL			1	pul		board ma	aterial
		Placing close to chassis				u			
				- Electrode patte	rn				
		Placing of leaded components after		– Sold	ering iron				
		Placing of leaded components after chip components			ead wire	Solder resist	AL AL		
		of				1	NI		
		cing			۹				
		Chir Con			_				
		Lateral mounting				Solde	er resist		
		l lõ		66					
		eral				卢卢	4		
		Late							
		[Land Dime	nsions]						
				Г [—]	- Land				
			Chip Capacito	r	Solder F	Resist			
		c i	<u> </u>		XU.				
		l t t	····	··-+C_,					
		b b	а		V////.				
	Table 1 Flow soldering met	bod						(in mm)	
								(01100)	
	GRM39	GRM40	GRM42-6	LL0508	LL0612	GRH706	GRH708	CDU110	
	GRM420	GRM425	GRM430	LL0508	LLUGIZ	GKH/06	GRH/08	GRH110	
	Dimen- L 1.6	2.0	3.2	1.25	1.6	1.25	2.0	1.4	
	sions W 0.8	1.25	1.6	2.0	3.2	1.25	1.25	1.4	
	a 0.6–1.0	1.0-1.2	2.2-2.6	0.4-0.7	0.6-1.0	0.4-0.6	1.25	0.5-0.8	
	b 0.8-0.9	0.9-1.0	1.0-1.1	0.4-0.7	0.8-0.9	0.4-0.8	0.9-1.0	0.5-0.8	
	0.0-0.9	-	1.0-1.1	1.4–1.8	2.6-2.8	0.8-0.8	0.9-1.0	1.0-1.2	
	c 0.6–0.8	0.8-1.1							

Process	Cautions						Cor	ntrol Poir	nts				Reference I
3. PCB	Table 2 Reflow	v soldering	g metho	d									(in mm)
Design		GRM33	GRM36 GRM615	GRM39 GRM420 GRM220	GRM40 GRM425 GRM225	GRM42-6 GRM430 GRM230	GRM42-2 GRM235 GRM435	GRM43-2 GRM240	GRM44-1	LL0306	LL0508	LL0612	GRH706
	Dimen- L	0.6	1.0	1.6	2.0	3.2	3.2	4.5	5.7	0.8	1.25	1.6	1.25
	sions W	0.3	0.5	0.8	1.25	1.6	2.5	3.2	5.0	1.6	2.0	3.2	1.0
	а	0.2-0.3	0.3 -0.5	0.6-0.8	1.0-1.2	2.2-2.4	2.0-2.4	3.0-3.5	4.0-4.6	0.2-0.4	0.4-0.6	0.6-0.8	0.4-0.6
	b	0.2-0.35	0.35-0.45	0.6-0.7	0.6-0.7	0.8-0.9	1.0-1.2	1.2-1.4	1.4-1.6	0.3-0.4	0.3-0.5	0.6-0.7	0.6-0.8
	С	0.2-0.4	0.4 -0.6	0.6-0.8	0.8-1.1	1.0-1.4	1.8-2.3	2.3-3.0	3.5-4.8	1.0-1.4	1.4-1.8	2.6-2.8	0.8-1.0
		GRH708	GRH710	GRH110	GRH111	GR530	GR535	GR540	GR545	GR550	GR555	GR580	
	Dimen- L	2.0	3.2	1.4	2.8	4.5	5.6	10.6	10.6	11.8	16.0	28.1	
	sions W	1.25	2.5	1.4	2.8	3.8	5.0	5.0	10.0	10.6	5.0	13.2	
	а	1.0-1.2	2.2-2.5	0.4-0.8	1.8-2.1	3.2-3.4	4.2-4.5	8.5-9.0	8.5- 9.0	9.0-9.5	13.0-13.5	25.0-25.5	
	b	0.6-0.8	0.8-1.0	0.6-0.8	0.7-0.9	0.9-1.2	0.9-1.2	1.3-1.5	1.3- 1.5			2.2- 2.4	1
	С	0.8-1.0	1.9-2.3	1.0-1.2	2.2-2.6	3.0-3.8	4.0-5.0	4.0-5.0	8.0-10.0			10.0-13.0]
	Table 3 GNM	Series for	reflow s	oldering	method								
			1	_				Dimen	sions (mr	n)			
	Chip Ca	pacitor	a	Тур	be –	L	W	а	b	, c		d	
				GNM3	0-401	3.2	1.6	0.8-1.0		_		-0.5	
			and										
				Choose a lexing or				nimizes tl	ne stress	imposed	on the c	hip durin	g
			[(Compone	ent Direc	tion]							
						→			A to	cate chip the direc iich stres		al	
			[(Chip Mou	untina Cla	ose to Bo	ard Sepa	aration po	pint]				
			ľ		Perfora	tion B			Ch	ip arranç orst A-C-	gement (B≃D) B	est	
						\sim	\leq						
4. Solder Paste Printing	 Overly thick application of paste results in excessivity solder. This makes the chip more susceptible to mechanic thermal stress on the bocause cracked chips. Too little solder paste relack of adhesive strength outer electrode, which michips breaking loose from the solution of t	re fillet hei re al and ard and m sults in a n on the	ght 0 Iay	Aake sure 0.2mm mi Optimum	n.					e end su).2mm min.	rface to a	a height c	of

8

Process	Cautions	Control Points	Reference Data
5. Chip	An excessively low bottom dead	• Adjust the suction nozzle's bottom dead point by correcting warps in the board.	Data 5
Placing	point of the suction nozzle imposes	Correct Incorrect	Break Strength
	great force on the chip during	Suction nozzle	
	mounting, causing cracked chips.		
	Dirt particles and dust accumulated		
	between the suction nozzle and the	Deflection	
	cylinder inner wall prevent the nozzle	Board LL Board guide	
	from moving smoothly. This imposes		
	great force on the chip during	Normally, the suction nozzle's bottom dead point must be set on the upper	
	mounting, causing cracked chips.	surface of the board.	
	• The locating claw, when worn out,	Nozzle pressure for chip mounting must be a 1 to 3N static load.	
	imposes uneven forces on the chip	The suction nozzle and the locating claw must be maintained, checked and	
	when positioning, causing cracked	replaced periodically.	
	chips.	- When prohesting least temperature differential AT within the range shown in	
6. Reflow	Sudden heating of the chip results in	• When preheating, keep temperature differential, ∆T, within the range shown in Table 4. The ameller the AT, the lase stress on the chin	
Soldering	distortion due to excessive	Table 4. The smaller the ΔT , the less stress on the chip.	
	expansion and construction forces	Table 4	
	within the chip causing cracked	Chip Size Temperature Differential	
	chips.	GRM33/36/39/40/42-6	
		GRM420/425/430/615	
		GRM220/225/230 ∆T≦190°C	
		LL0306/0508/0612	
		GRH706/708/110	
		GRM42-2/43-2/44-1/240/435 GRH710/111	
		GRM235/GNM30-401 ΔT≦130°C	
		GR530/535/540/545/550/555/580	
		GK350/353/340/343/350/353/380	
		range shown in the above table. [Standard Conditions for Reflow Soldering] • Infrared reflow • Vapor reflow • Vapor reflow • Vapor reflow • Vapor reflow • Vapor reflow • Vapor reflow	
		[Allowable Soldering Temperature and Time]	
		 0 30 60 90 Soldering time (sec.) In case of repeated soldering, the accumulated soldering time must be within the range shown above. 	
Inverting the PCB		Make sure not to impose an abnormal mechanical shock on the PCB.	
			1

Process	Cautions	Control Points	Reference Data
7. Adhesive Application	 Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. Low viscosity adhesive causes chips to slip after mounting. 	 The amount of adhesive must be more than dimension C shown in the drawing below to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration. Adhesive must have a viscosity of 500ps (at 25°C) min. Adhesive must have a viscosity of 500ps (at 25°C) min. 	
8. Adhesive Curing	 Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption. 	Control curing temperature and time in order to prevent insufficient hardening.	
Inverting		Make sure not to impose an abnormal mechanical shock on the PCB.	
the board 9. Leaded	If the PCB is flexed when leaded	Before mounting leaded components, support the PCB using backup pins or	
Component Insertion	components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.	special jigs to prevent warping.	
10. Flux Application	 An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently cleaned. 	 Apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering). Use flux with a halide content of 0.2wt% max. But do not use strongly acidix flux. Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned. 	
11. Flow Soldering	 Sudden heating of the chip results in thermal distortion causing cracked chips. An excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination. 	 When preheating, keep the temperature differential between solder temperature and chip surface temperature, ΔT, within the range shown in Table 5. The smaller the ΔT, the less stress on the chip. When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 5. Do not apply flow soldering to chips not listed in Table 5. Table 5 Chip Size Temperature Differential GRM39/40/42-6 GRM420/425/430 LL0508/0612 GRH706/708/110 [Standard Conditions for Flow Soldering] 	Data 6 Thermal shock Data 7 Solder heat resistance

Process	Cautions	Control Points	Reference Data
Process 11. Flow Soldering	Cautions	Control Points [Allowable Soldering Temperature and Time] (a) 270 260 260 250 240 230 20 30 30 Soldering time (sec.) In case of repeated soldering, the accumulated soldering time must be within the range shown above. [Optimum Solder Amount for Flow Soldering] Up to chip thickness	Reference Data
		 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate. As a single chip A B C Outer electrode 	
12. Correction with a Soldering iron	with a GRM200 series> Soldering • Sudden heating of the chip results in	 When preheating, keep temperature differential, ΔT, within the range shown in Table 6. The smaller theΔT, the less stress on the chip. Table 6 Chip Size Temperature Differential GRM36/39/40/42-6 GRM420/425/430/615 LL0306/0508/0612 ΔT≤190°C 	Data 8 Thermal shock when making a correction with a soldering iron
		$\begin{tabular}{ c c c c c c c } \hline GRH706/708/110 & & & & & & & & & & & & & & & & & & $	

	Cautions		Control Points		Reference Data		
12. Correction		[Allowable Time and T	Temperature for Making Cor	rections with a Soldering Iron]	Data 8		
with a					Thermal shock		
Soldering		The accumulated soldering time/temperature including reflow/flow soldering must			when making a		
iron		be within the range sho		-	correction with a		
					soldering iron		
		<u></u>					
		ຍ 270					
		10 In					
		(2) 270 earning 260 250 240 240 230					
		d ter					
		- <u>E</u> 240					
		230		▶			
		0	30 60	90			
			5	Soldering time (sec.)			
		Ontimum Soldor Ame	unt when Corrections Are M	lade Using a Soldering Iron]			
				ade Using a Soldering horij			
				T			
		/ F		Up to chip thickness			
			· · · · · · · · · · · · · · · · · · ·				
	When correcting chips with a soldering iron, no preheating is required if the chip						
		is listed in Table 7 and the following conditions (Table 7) are met.					
		Preheating should be					
			Table 7				
		Item	Cond	itions			
			GRM36/39/40	GRM42-6			
		Chin Sizo	GRM420/425/615	GRM430			
		Chip Size	LL0306/0508	LL0612			
			GRH706/708/110	GNM30-401			
		Temperature of					
		iron tip	300℃ max.	270℃ max.			
		Soldering iron					
		wattage	20W	max.			
		Diameter of iron tip	φ 3mm	i max.			
		Restriction	Do not allow the iron tip to direct				
				,			
	<for grm200="" series=""></for>	When solder GRM200) series chip capacitor, keep	the following conditions.			
		<soldering iron="" metho<="" td=""><td>od></td><td>-</td><td></td></soldering>	od>	-			
		Item	Cond	itions			
				GRM225/230/235/240			
		Chip type	GRM220				
		Pre-heating	no pre-heating is possible	∆≦130℃			
		Pre-heating Temperature of iron tip	no pre-heating is possible 300℃	∆≦130℃ max.			
		Pre-heating Temperature of iron tip Soldering iron wattage	no pre-heating is possible 300°C 20W	∆≦130℃ max. max.			
		Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip	no pre-heating is possible 300°C 20W ¢ 3mm	∆≦130℃ max. max.			
		Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time	no pre-heating is possible 300°C 20W \$ 3mm 5 sec.	∆≤130℃ max. max. max.			
		Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount	no pre-heating is possible 300℃ 20W ∳ 3mm 5 sec. ≦Chip thickness	<u>∆≤130℃</u> max. max. max. ≤1/2 of chip thickness			
		Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time	no pre-heating is possible 300°C 20W \$ 3mm 5 sec.	<u>∆≤130℃</u> max. max. max. ≤1/2 of chip thickness			
		Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction	no pre-heating is possible 300℃ 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direct	∆≤130°C max. max. n max. ≤1/2 of chip thickness ctly touch the ceramic element.			
	<for microstrip="" types=""></for>	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction	no pre-heating is possible 300℃ 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direct m the ribbon terminal base, I	∆≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip			
	<for microstrip="" types=""></for>	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction	no pre-heating is possible 300°c 20W ∳ 3mr 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, act the capacitor. Preheating	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
	<for microstrip="" types=""></for>	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction • Solder 1mm away from does not directly conta • Complete soldering w	no pre-heating is possible 300℃ 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direct m the ribbon terminal base, I	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
		Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction Solder 1mm away from does not directly conta Complete soldering w temperature.	no pre-heating is possible 300°c 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, l act the capacitor. Preheating ithin 3 seconds with a solder	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
3. Washing	Excessive output of ultrasonic	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction • Solder 1mm away from does not directly conta • Complete soldering w	no pre-heating is possible 300°c 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, l act the capacitor. Preheating ithin 3 seconds with a solder	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
3. Washing	Excessive output of ultrasonic oscillation during cleaning causes	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction Solder 1mm away from does not directly conta Complete soldering w temperature.	no pre-heating is possible 300°c 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, l act the capacitor. Preheating ithin 3 seconds with a solder	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
3. Washing	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction Solder 1mm away from does not directly conta Complete soldering w temperature.	no pre-heating is possible 300°c 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, l act the capacitor. Preheating ithin 3 seconds with a solder	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
3. Washing	Excessive output of ultrasonic oscillation during cleaning causes	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction Solder 1mm away from does not directly conta Complete soldering w temperature.	no pre-heating is possible 300°c 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, l act the capacitor. Preheating ithin 3 seconds with a solder	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction • Solder 1mm away from does not directly contained on the	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, I act the capacitor. Preheating ithin 3 seconds with a solder te PCBs.	Δ ≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary.			
	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction • Solder 1mm away from does not directly contained on the	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, I act the capacitor. Preheating ithin 3 seconds with a solder te PCBs.	Δ≦130°C max. max. max. ≦1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary. ring tip less than 270°C in			
	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Thrusting force of the test probe can 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction • Solder 1mm away from does not directly contained on the	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, I act the capacitor. Preheating ithin 3 seconds with a solder te PCBs.	Δ≦130°C max. max. max. ≦1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary. ring tip less than 270°C in			
4. Inspection	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Thrusting force of the test probe can flex the PCB, resulting in cracked 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Solder amount Restriction • Solder 1mm away from does not directly contained on the soldering wittemperature. • Complete soldering wittemperature. • Take note not to vibra • Provide support pins of	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, I act the capacitor. Preheating ithin 3 seconds with a solder te PCBs.	∆≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary. ring tip less than 270°C in to prevent warping or flexing.			
4. Inspection	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Thrusting force of the test probe can flex the PCB, resulting in cracked 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Solder amount Restriction • Solder 1mm away from does not directly contained on the soldering wittemperature. • Complete soldering wittemperature. • Take note not to vibra • Provide support pins of	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to direc m the ribbon terminal base, I act the capacitor. Preheating ithin 3 seconds with a solded te PCBs.	∆≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary. ring tip less than 270°C in to prevent warping or flexing.			
14. Inspection 15. Resin Coating	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Solder amount Restriction • Solder 1mm away from does not directly contained water and the experiment of the experiment. • Complete soldering water and the experiment. • Take note not to vibra • Provide support pins of the experiment. • When selecting resin	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to dired m the ribbon terminal base, I act the capacitor. Preheating ithin 3 seconds with a solde te PCBs. on the back side of the PCB materials, select those with	∆≤130°C max. max. max. ≦1/2 of chip thickness other the ceramic element. being careful that the solder tip g is unnecessary. ring tip less than 270°C in to prevent warping or flexing. low contraction.			
l6. Board	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Board flexing at the time of 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Solder amount Restriction • Solder 1mm away from does not directly contained water and the experiment of the experiment. • Complete soldering water and the experiment. • Take note not to vibra • Provide support pins of the experiment. • When selecting resin	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to dired m the ribbon terminal base, i act the capacitor. Preheating ithin 3 seconds with a solde te PCBs. on the back side of the PCB materials, select those with nposed on the chip at the tin	∆≤130°C max. max. max. ≤1/2 of chip thickness ctly touch the ceramic element. being careful that the solder tip g is unnecessary. ring tip less than 270°C in to prevent warping or flexing.			
14. Inspection 15. Resin Coating	 Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. 	Pre-heating Temperature of iron tip Soldering iron wattage Diameter of iron tip Soldering time Solder amount Restriction • Solder 1mm away from does not directly contained with the soldering with the soldering with the soldering with the soldering with the solder solder to vibra • Take note not to vibra • Provide support pins of the solution of th	no pre-heating is possible 300°C 20W ∳ 3mm 5 sec. ≦Chip thickness Do not allow the iron tip to dired m the ribbon terminal base, i act the capacitor. Preheating ithin 3 seconds with a solde te PCBs. on the back side of the PCB materials, select those with nposed on the chip at the tin	∆≤130°C max. max. max. max. ≤1/2 of chip thickness othy touch the ceramic element. being careful that the solder tip g is unnecessary. ring tip less than 270°C in to prevent warping or flexing. low contraction. ne of board break is in the order			

MONOLITHIC CERAMIC CAPACITOR

High-capacitance for General Electrical Equipment GHM1500 Series

FEATURES

- 1. A new monolithic structure for small, high-capacitance capable of operating at high-voltage levels.
- 2. Sn-plated external electrodes allow mounting without silver compound solder.
- 3. The GHM1525/1530 type for flow and reflow soldering, and other types for reflow soldering.

■APPLICATIONS

- 1. Ideal use as hot-cold coupling for DC-DC converter.
- 2. Ideal use on line filter and ringer detector for telephone, facsimile and modem.
- 3. Ideal use on diode-snubber circuit for switching power supply.

DIMENSIONS

Type (EIA Code)	Dimensions (mm)						
(EIA Code)	L	W	Т	g	е		
GHM1525 (0805)	2.0±0.2	1.25±0.2		0.7			
GHM1530 (1206)	3.2±0.2	1.6±0.2	See	1.5	0.3		
GHM1535 (1210)	3.2±0.3	2.5±0.2	"STANDARD LIST"				
GHM1540 (1812)	4.5±0.4	3.2±0.3	LIST	2.5			
GHM1545 (2220)	5.7±0.4	5.0±0.4		3.5			

STANDARD LIST

Part Number	Dimensions (mm)			Nom.Cap.	Сар.	DC Rated Volt.	Packaging Qty.
	L	W	Т	(pF)	Tol.	(V)	(pcs./reel)
GHM1525 B 102 K 250	2.0±0.2	1.25±0.2	1.0 ⁺ _{-0.3}	1,000			4,000
GHM1525 B 152 K 250				1,500			
GHM1525 B 222 K 250				2,200			
GHM1525 B 332 K 250				3,300			
GHM1525 B 472 K 250				4,700			
GHM1525 B 682 K 250				6,800			
GHM1525 B 103 K 250			1.25±0.2	10,000	250 ±10%		3,000
GHM1530 B 153 K 250		1.6±0.2	1.0 + 0	15,000		250	4,000
GHM1530 B 223 K 250	2 2 4 0 2		1.0 _0.3	22,000			4,000
GHM1530 B 333 K 250	3.2±0.2		$1.25^{+0}_{-0.3}$	33,000		3,000	
GHM1530 B 473 K 250			1.6 ±0.2	47,000			2,000
GHM1535 B 683 K 250	2 2 + 0 2	2.5±0.2	$1.5 \stackrel{+}{_{-0.3}}^{0}$	68,000		-	
GHM1535 B 104 K 250	- 3.2±0.3		$2.0 + 0_{-0.3}$	100,000			1,000
GHM1540 B 154 K 250	4 5 + 0 4	3.2±0.3		150,000			1,000
GHM1540 B 224 K 250	- 4.5±0.4		$2.5 \stackrel{+ 0}{-0.3}$	220,000			500
GHM1545 B 334 K 250	5.7±0.4	5.0±0.4	$2.0 + 0_{-0.3}$	330,000			1,000
GHM1545 B 474 K 250	5.7±0.4			470,000			
GHM1530 B 102 K 630		1.6±0.2	1.25 ⁺ _{-0.3}	1,000			3,000
GHM1530 B 152 K 630				1,500			
GHM1530 B 222 K 630				2,200			
GHM1530 B 332 K 630	3.2±0.2			3,300			
GHM1530 B 472 K 630				4,700		630	
GHM1530 B 682 K 630				6,800			
GHM1530 B 103 K 630	1			10,000			
GHM1535 B 153 K 630	- 3.2±0.3	2.5±0.2	1.5 ^{+ 0} _{-0.3}	15,000			0.000
GHM1535 B 223 K 630				22,000			2,000
GHM1540 B 333 K 630		3.2±0.3		33,000			1,000
GHM1540 B 473 K 630				47,000			
GHM1540 B 683 K 630	- 4.5±0.4		$2.0 + 0_{-0.3}$	68,000		-	
GHM1540 B 104 K 630			$2.6 \stackrel{+ 0}{-0.3}$	100,000			500
GHM1545 B 154 K 630	E 7+0 4	5.0±0.4	$2.0 + 0 \\ -0.3$	150,000			1,000
GHM1545 B 224 K 630	- 5.7±0.4		$2.7 \stackrel{+ 0}{_{-0.3}}$	220,000			500

TYPICAL CHARACTERISTICS DATA

•Capacitance-Temp. Char.

•Impedance-Freq. Char.

100M

10M

Frequency (Hz)

1G

10m L 1M

1. Operating voltage

Be sure to use a capacitor only within its rated operating voltage range. When DC-rated capacitors are to be used in AC or ripple voltage circuits, <u>be sure to maintain the Vp-p value of the applied voltage within the rated voltage range</u>.

 Operating temperature and self-generated heat <u>Keep the surface temperature of a capacitor within the</u> <u>rated operating temperature range</u>. Be sure to take into account the heat produced by the capacitor itself. When a capacitor is used in a high-frequency circuit, pulse voltage circuit or the like, it may produce heat due to dielectric loss. <u>Keep such self-generated temperature below 20°C.</u>

Operating and storage environment
 Do not use or store capacitors in a corrosive
 atmosphere, especially where chloride gas, sulfide gas,
 acid, alkali, salt or the like are present and avoid
 exposure to moisture.
 Before cleaning, bonding or molding this product, verify
 that these processes do not affect product quality by
 testing the performance of a cleaned, bonded or molded
 product in the intended equipment.
 Store the capacitors where the temperature and relative
 humidity do not exceed 5 to 40°C and 20 to 70%.
 Use capacitors within 6 months.

- Vibration and impact Do not expose a capacitor to excessive shock or vibration during use.
- 5. Circuit board material

Please contact our sales representatives or engineers in case that GHM products (size 4.5×3.2mm and over) are to be mounted upon a metal-board or metal-frame. Soldering heat causes the expansion and shrinkage of a board or frame, which may result in chip-cracking.

6. Land layout for cropping PC Board

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component direction]

Locate chip horizontal to the direction in which stress acts.

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A C B≂D Best

7. Soldering (Prevention of the thermal shock) If a chip component is heated or cooled abruptly during soldering, it may crack due to the thermal shock. To prevent this, adequate soldering condition should be taken following our recommendation below.

Carefully perform pre-heating so that temperature difference (ΔT) between the solder and component surface should be in the following range.

Chip Size Soldering method	3.2×1.6mm and under	3.2×2.5mm and over
Reflow method or Soldering iron method	∆T≦190℃	∆T≦130℃
Flow method or Dip Soldering method	∆T≦150℃	

When components are immersed in solvent after mounting, pay special attention to maintain the temperature difference within 100°C.

When soldering chips with a soldering iron, it should be performed in following conditions.

Item	Conditions		
Chip size	≦2.0×1.25mm 3.2×1.6mm		
Temperature of iron-tip	300°C max. 270°C max.		
Soldering iron wattage	20W max.		
Diameter of iron-tip	φ 3.0mm max.		
Soldering time	3 sec. max.		
Caution	Do not allow the iron-tip to directly touch the ceramic element.		

· Infrared reflow soldering conditions (Example)

Temperature (°C)

۸Т

Flow soldering conditions

• Dip soldering/Soldering iron conditions (Example)

8. Soldering method

GHM products whose sizes are 3.2×1.6mm and under for flow and reflow soldering, and other sizes for reflow soldering.

Be sure to contact our sales representatives or engineers in case that GHM products (size 3.2×2.5mm and over) are to be mounted with flow soldering. It may crack due to the thermal shock.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the product is used.

- 1. MOUNTING OF CHIPS
- Termination thickness of chip capacitor and desirable thickness of adhesives applied

- 2. CONSTRUCTION OF BOARD PATTERN After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To pre-
- Construction and dimensions of pattern (example)

Mechanical shock of the chip placer
 When the positioning claws and pick up nozzle are worn, the load is applied to the chip while positioning is concentrated to one position, thus causing cracks, breakage, faulty positioning accuracy, etc.
 Careful checking and maintenance are necessary to prevent unexpected trouble.

An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

vent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

Land layout to prevent excessive solder

3. SOLDERING

(Care for minimizing loss of the terminations)

• Limit of losing effective area of the terminations and conditions needed for soldering.

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain minimum 25% on all edge length A-B-C-D of part with A, B, C, D, shown in the Figure below.

(Flux and Solder)

- Use rosin-type flux and do not use a highly acidic flux (any containing a minimum of 0.2wt% chlorine).
- Please use 6×4 eutectic solder, or 5×5 solder. (Do not use solder with silver.)

(Solder Buildup)

- (i) Flow soldering and iron soldering Use as little solder as possible (as shown in Fig.1), and confirm that the solder is securely placed.
- (ii) Reflow soldering

When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations (as shown in Fig.2).

4. CLEANING

• To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less. Rinsing time : 5 minutes maximum.

5. RESIN COATING

- When selecting resin materials, select those with low contraction and low moisture absorption coefficient (generally epoxy resin is used).
- Buffer coat can decrease the influence of the resin shrinking (generally silicone resin).

In case of repeated soldering, the accumulated soldering time must be within the range shown above.

△Note:

1. Export Control

(For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

(For customers in Japan)

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

2. Please contact our sales representatives or product engineers before using our products listed in this catalog for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property, or when intending to use one of our products for other applications than specified in this catalog.

- ① Aircraft equipment
- ② Aerospace equipment
- ③ Undersea equipment
- (4) Medical equipment
- (5) Transportation equipment (vehicles, trains, ships, etc.)
- 6 Traffic signal equipment
- ⑦ Disaster prevention / crime prevention equipment
- ⑧ Data-processing equipment
- (9) Application of similar complexity and/or reliability requirements to the applications listed in the above
- 3. Product specifications in this catalog are as of July 1999. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before your ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. The parts numbers and specifications listed in this catalog are for information only. You are requested to approve our product specification or to transact the approval sheet for product specification, before your ordering.
- 5. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or third party's intellectual property rights and other related rights in consideration of your using our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 6. None of ozone depleting substances (ODS) under the Montreal Protocol is used in manufacturing process of us.

milPata Murata Manufacturing Co., Ltd.

http://www.murata.co.jp/products/

Head Office 2-26-10, Tenjin Nagaokakyo-shi, Kyoto 617-8555, Japan Phone:81-75-955-6502 International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone:81-3-5469-6123 Fax:81-3-5469-6155 E-mail:intl@murata.co.jp