
X8R/X8L Dielectric

General Specifications

AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150° C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of $\pm 15^{\circ}$ C and $\pm 15^{\circ}$ C. The X8L material has capacitance variation of $\pm 15^{\circ}$ C between - 55° C to $\pm 15^{\circ}$ C and $\pm 15^{\circ}$ C to $\pm 15^{\circ}$ C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

PART NUMBER (see page 2 for complete part number explanation)

0805	<u>5</u>	F	104	K	4	Ţ	2	A
Size 0603 0805 1206	Voltage 16V = Y 25V = 3 50V = 5 100V = 1	Dielectric X8R = F X8L = L	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros e.g. 10µF = 106	Capacitance Tolerance J = ± 5% K = ±10% M = ± 20%	Failure Rate 4 = Automotive A = Not Applicable	Terminations T = PlatedNi and Sn Z = FLEXITERM®	Packaging 2=7" Reel 4=13"Reel	Special Code A = Std. Product

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

X8R (Flexiterm Offered)

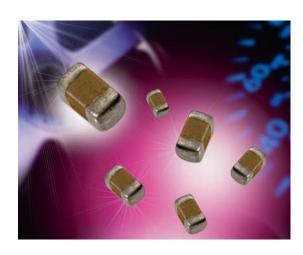
SIZE			0603			0805	1206			
Soldering		ı	Reflow/Wa	ve	R	eflow/Wav	Reflow/Wave			
	WVDC	WVDC 25V 50V		25V	50V	25V	50V			
271	Cap 270	G	G							
331	(pF) 330	G	G		1	1				
471	470	Ğ	G		i	 1				
681	680	G	Ğ		i i	l i				
102	1000	Ğ	Ğ		l i	l í				
152	1500	Ğ	Ğ	i	l i	l í	Ť	Ť	Ť	
182	1800	G	Ğ	Ĭ	Ť	Ť	Ť	Ť	1	
222	2200	Ğ	Ğ	i	l i	l í	i i	Ť	Ť	
272	2700	Ğ	Ğ	j	Ť	l i	ĺ	j	j	
332	3300	G	Ğ	Ī		i i	i i		j	
392	3900	G	Ğ	j	j	i i	j	j	i i	
472	4700	Ğ	G	j	j	j	j	j	Ť	
560	5600	G	G	J	j	j j	j	j	j	
682	6800	Ğ	Ğ	j	j	j	j	Ĵ	Ĵ	
822	8200	G	G	j	j	j	j	j	j	
103	Cap 0.01	G	G	J	j	j	j	j	J	
123	(μF) 0.012	G	G		J	J	j	J	j	
153	0.015	G	G		j	J	j	J	J	
223	0.022	G	G		J	J	J	J	J	
273	0.027	G	G		J	J		J	j	
333	0.033	G	G		J	J		J	J	
393	0.039	G	G		J	J		J	J	
473	0.047	G	G		J	J		J	J	
563	0.056	G			N	N		M	M	
683	0.068	G			N	N		M	M	
823	0.082				N	N		M	M	
104	0.1				N	N		M	M	
124	0.12				N	N		M	M	
154	0.15				N	N		M	M	
184	0.18				N			M	M	
224	0.22				N			M	M	
274	0.27				<u> </u>			M	M	
334	0.33							M	M	
394	0.39				ļ			M		
474	0.47				L			M		
684	0.68									
105	1 1				ļ					
155	1.5									
225	2.2	251/	FOV	100),	251/	FOV	1001/	251/	F017	
	WVDC	25V	50V	100V	25V	50V	100V	25V	50V	
SIZE			0603		l 0805			1206		

X8L (Flexiterm Offered)

SIZE		0603			0805			1206				1210		
Sol	dering	Re	eflow/W	ave	R	eflow/Wa	ave	Reflow/Wave				Re	flow/Wa	ive
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
271	Cap 270	G	G											
331	(pF) 330	G	Ğ	G	J	J	J							
471	470	G	G	G	J	J	J							
681	680	G	G	G	J	J	J							
102	1000	G	G	G	J	J	J		J	J				
152	1500	G	G	G	J	J	J		J	J	J			
182	1800	G	G	G	J	J	J		J	J	J			
222	2200	G	G	G	J	J	J		J	J	J			
272	2700	G	G	G	J	J	J		J	J	J			
332	3300	G	G	G	J	J	J		J	J	J			
392	3900	G	G	G	J	J	J		J	J	J			
472	4700	G	G	G	J	J	J		J	J	J			
562	5600	G	G	G	J				J	J				
682	6800	G	G	G	J	J	J		J	J	J			
822	8200	No Flex	G	G	J	J	J		J	J	J			_
103 123	Cap 0.01 (uF) 0.012	G	G	G	J	J	J		J	J	J			
153		G	G		J	J	J		J	J	J			
183	0.015 0.018	G	G G		J	J	J		J	J	J			-
223	0.018	G	G		J	J	J	_	J	J	J	_		_
273	0.022	G	G		J	J	J		J	J	J			
333	0.027	G	G		J	1	N	-	J	J	J	-		-
393	0.039	G	G		j	1	N	_	1	1	1	-		-
473	0.037	Ğ	Ğ		Ĵ	1	N	_	1	1	,	_		
563	0.056	G	G		1	J	N	_	J	J	J	\vdash		-
683	0.068	Ğ	Ğ		Ĵ	 	Ň		Ť	Ť	Ť			-
823	0.082	Ğ	Ğ		Ĵ	Ť	N		Ĭ	Ť	j	\vdash		_
104	0.002	Ğ	Ğ		Ĵ	j	Ň		j	j	M			_
124	0.12				Ť	Ň			Ĵ	- i	M			
154	0.15				j	N		J	J	j	Q			
184	0.18				N	N		J	J	J	Q			
224	0.22				N	N		J	J	J	Q			
274	0.27				N			J	M	M	Q			
334	0.33				N			J	M	M	Q			
394	0.39				N			M	M	Р	Q			
474	0.47				N			M	M	Р	Q			
684	0.68				N			M	M	Р	Q			
824	0.82				N			M	M	Р	Q			
105	1				N			M	M	Р	Q			
155	1.5							M	M					<u> </u>
225	2.2							M	M				Z	Z
475		\vdash										-7	Z	_
106	MA/DO	2517	FOV/	1001/	251/	FOV.	1001/	1/1/	251/	50V	1001/	Z 10)/	50V	1001
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V		100V	10V		100V
	SIZE		0603			0805			12	06		1210		

Letter	А	С	Е	G	J	K	M	N	Р	Q	X	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER					FMBOSSFD							

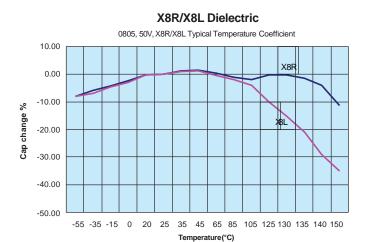
= AEC-Q200 Qualified


X8R/X8L Dielectric

General Specifications

APPLICATIONS FOR X8R AND X8L CAPACITORS

- All market sectors with a 150°C requirement
- Automotive on engine applications
- · Oil exploration applications
- · Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
 - Water pump
- Hybrid commercial applications
 - Emergency circuits
 - Sensors
 - Temperature regulation



ADVANTAGES OF X8R AND X8L MLC CAPACITORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- · RoHS compliant
- Low ESR / ESL compared to other technologies
- Tin solder finish
- FLEXITERM® available
- Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- Application Engineering
- Application Support

X8R/X8L Dielectric

Specifications and Test Methods

	ter/Test	X8R/X8L Specification Limits		Conditions			
Operating Tem	perature Range	-55°C to +150°C	Temperature Cycle Chamber				
Capac	itance	Within specified tolerance	Freq.: 1.0 kHz ± 10%				
Dissipation	on Factor	≤ 2.5% for ≥ 50V DC rating	Voltage: 1.0Vrms ± .2V				
2.00.pa		≤ 3.5% for 25V DC and 16V DC rating					
Insulation I	Resistance	100,000MΩ or 1000MΩ - μF,		ith rated voltage for			
Insulation	resistance	whichever is less		oom temp/humidity			
				50% of rated voltage for			
Dielectric	Strength	No breakdown or visual defects		e and discharge current			
			limited to	50 mA (max)			
				ce with 150% of rated			
			voltage for	500V devices.			
	Appearance	No defects		ion: 2mm			
	Capacitance	≤±12%	Test Time	: 30 seconds			
Resistance to	Variation		┙,	7			
Flexure	Dissipation	Meets Initial Values (As Above)		1mm/sec			
Stresses	Factor						
	Insulation	≥ Initial Value x 0.3					
	Resistance	- maar value x 0.0	90 mm				
		≥ 95% of each terminal should be covered					
Solde	rability			tic solder at 230 ± 5°C			
		with fresh solder	101 5.U ±	0.5 seconds			
	Appearance Capacitance	No defects, <25% leaching of either end terminal					
	Variation	≤±7.5%	Dip device in eutectic solder at 260°C for 60				
Resistance to Solder Heat	Dissipation						
	Factor	Meets Initial Values (As Above)	seconds. Store at room temperature for 24 ± 2 hours before measuring electrical properties.				
	Insulation						
	Resistance	Meets Initial Values (As Above)		5 1 1			
	Dielectric		_				
	Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes			
	Capacitance	≤±7.5%		≤ 3minutes			
	Variation	≤±1.5%	Step 2: Room Temp	≥ 3minutes			
	Dissipation		0, 0, 10500, 00	00 0 1 1			
Thermal	Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes			
Shock	Insulation	Monto Initial Value (A - Alesca)	Cton A. D T	2 mains de-			
	Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes			
	Dielectric	Moote Initial Values (As Above)	Repeat for 5 cycles and	measure after			
	Strength	Meets Initial Values (As Above)	24 ± 2 hours at room ten	perature			
	Appearance	No visualdefects		·			
	Capacitance	≤±12.5%	Charge device with 1.	5 rated voltage (≤ 10V) in			
	Variation	≥±12.070		et at 150°C ± 2°C			
Load Life	Dissipation	Initial Value v 2.0 (See Above)	for 1000 ho	ours (+48,-0)			
	Factor	≤ Initial Value x 2.0 (See Above)					
	Insulation	> Initial Value v 0.2 (Co.s Above)		chamber and stabilize			
	Resistance	≥ Initial Value x 0.3 (See Above)		ure for 24 ± 2 hours			
	Dielectric	Moote Initial Values (As Abovo)	before r	neasuring.			
	Strength	Meets Initial Values (As Above)					
	Appearance	No visualdefects	Store in a test sham	ber set at 85°C ± 2°C/			
	Capacitance	≤±12.5%		numidity for 1000 hours			
	Variation						
	51 1		(+48, -0) with rated voltage applied.				
Load	Dissipation	< Initial Value v 20 (See Ahove)					
	Factor	≤ Initial Value x 2.0 (See Above)	D- ()				
Load Humidity	Factor Insulation	<u> </u>		mber and stabilize at			
	Factor Insulation Resistance	≤ Initial Value x 2.0 (See Above) ≥ Initial Value x 0.3 (See Above)	room temperatu	re and humidity for			
	Factor Insulation	<u> </u>		re and humidity for			

