

TPS22860

SLVSD04 - APRIL 2015

TPS22860 Ultra-Low Leakage Load Switch

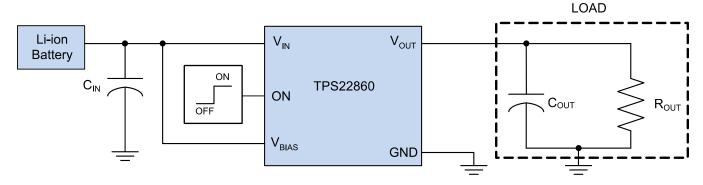
Features

- Integrated Single Channel Load Switch
- Bias Voltage Range (V_{BIAS}): 1.65 V to 5.5 V
- Input Voltage Range: 0 V to V_{BIAS}
- ON-Resistance (R_{ON})
 - R_{ON} = 0.73 Ω at VIN = 5 V (V_{BIAS} = 5 V)
 - R_{ON} = 0.68 Ω at VIN = 3.3 V (V_{BIAS} = 5 V)
 - R_{ON} = 0.63 Ω at VIN = 1.8 V (V_{BIAS} = 5 V)
- 200 mA Maximum Continuous Switch Current
- Ultra-Low Leakage Current
 - V_{IN} Leakage Current = 2 nA
 - V_{BIAS} Leakage Current at 5.5 V = 10 nA
- 6-pin SOT-23 or SC70 Package
- ESD Performance Tested per JESD 22
 - 2 kV HBM and 1 kV CDM

Applications

- Wearables
- Internet of Things
- Wireless Sensor Networks

3 Description


The TPS22860 is a small, ultra-low leakage current, single channel load switch. The device requires a V_{BIAS} voltage and can operate over an input voltage range of 0 V to V_{BIAS} . It can support a maximum continuous current of 200 mA. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. The TPS22860 is available in two small, spacesaving 6-pin SOT-23 and SC70 packages. The device is characterized for operation over the free-air temperature range of -40°C to 85°C.

Device Information⁽¹⁾

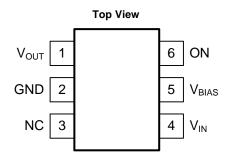
PART NUMBER	PACKAGE	BODY SIZE (NOM)
TDOOOOO	SOT-23	2.80 x 2.90 mm
TPS22860	SC-70	2.10 x 2.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Common Application Schematic

Table of Contents

1	Features 1		8.3 Feature Description	7
2	Applications 1		8.4 Device Functional Modes	7
3	Description 1	9	Application and Implementation	8
4	Common Application Schematic 1		9.1 Application Information	8
5	Revision History2		9.2 Typical Application	8
6	Pin Configuration and Functions	10	Power Supply Recommendations	9
7	Specifications	11	Layout	10
•	7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	10
	7.2 ESD Ratings		11.2 Thermal Reliability	10
	7.3 Recommended Operating Conditions		11.3 Improving Package Thermal Performance	10
	7.4 Thermal Information		11.4 Layout Example	10
	7.5 Electrical Characteristics	12	Device and Documentation Support	<mark>11</mark>
	7.6 Switching Characteristics		12.1 Trademarks	11
	7.7 Typical Characteristics		12.2 Electrostatic Discharge Caution	11
8	Detailed Description 7		12.3 Glossary	11
•	8.1 Overview	13	Mechanical, Packaging, and Orderable	4.4
	8.2 Functional Block Diagram 7		Information	11


5 Revision History

DATE	REVISION	NOTES
April 2015	*	Initial release.

SLVSD04-APRIL 2015

Pin Configuration and Functions

Pin Functions

PIN		1/0	DECODIDATION
NAME	NO.	I/O	DESCRIPTION
V _{OUT}	1	0	Switch output.
GND	2	_	Ground
NC	3	_	No connect
V _{IN}	4	I	Switch input. Connect a ceramic capacitor from V _{IN} to GND.
V _{BIAS}	5	1	Bias voltage. Power supply to the device.
ON	6	I	Active high switch control input. Do not leave floating.

Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT ⁽²⁾
V_{BIAS}	BIAS voltage range	-0.5	6.5	V
V_{IN}	Input voltage range	-0.5	$V_{BIAS} + 0.5$	V
V _{OUT}	Output voltage range	-0.5	$V_{BIAS} + 0.5$	V
V_{ON}	Input voltage range	-0.5	6.5	V
I _{MAX}	Maximum Continuous Switch Current		200	mA
I _{PLS}	Maximum Pulsed Switch Current, pulse <300us, 2% duty cycle		400	mA
T _A	Operating free-air temperature range (3)	-40	85	°C
TJ	Maximum junction temperature		125	°C
T _{STG}	Storage temperature	-65	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values are with respect to network ground terminal.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

Inapplications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $[T_{J(max)}]$ is dependent on the maximum operating junction temperature $[T_{J(max)}]$, the maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A(max)} = T_{J(max)} - (MJA \times P_{D(max)})$

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V_{IN}	Input voltage range		0	V_{BIAS}	V
V_{BIAS}	Supply voltage range		1.65	5.5	V
V _{ON}	Control input voltage range		0	5.5	V
V _{OUT}	Output voltage range		0	V_{BIAS}	V
$V_{IH, ON}$	High-level input voltage, ON	V _{BIAS} = 5 V	2.4	5.5	V
$V_{IL, ON}$	Low-level input voltage, ON	V _{BIAS} = 5 V	0	8.0	V
C _{IN}	Input Capacitor		1		μF

7.4 Thermal Information

		TPS	22860	
	THERMAL METRIC ⁽¹⁾⁽²⁾	DBV	DCK	UNIT
		6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	235.2	249.0	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	164.8	107.7	
$R_{\theta JB}$	Junction-to-board thermal resistance	82,.5	95.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	52.9	6.2	
ΨЈВ	Junction-to-board characterization parameter	82.0	93.7	

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over operating free-air temperature range⁽¹⁾ (unless otherwise noted)

	PARAMETER	TEST CO	TEST CONDITIONS			TYP	MAX	UNIT
POWER S	UPPLIES AND CURRENTS							
I _{Q, VBIAS}	V _{BIAS} quiescent current	$I_{OUT} = 0$, $V_{IN} = V_{ON} = V_{BIAS} =$	3.3 V			10	100	
I _{SD, VBIAS}	V _{BIAS} shutdown current	V _{ON} = 0 V				10	100	
I _{SD, VIN}	V _{IN} shutdown current	V _{ON} = 0 V, V _{OUT} = 1 V	V _{IN} = 3.0 V			2	50	nA
I _{ON}	ON pin input leakage current	V _{ON} = 5.5 V	V _{ON} = 5.5 V				100	
RESISTAN	ICE CHARACTERISTICS							
			V 22V	T _A = 25°C		0.92	1.15	
			$V_{IN} = 3.3 \text{ V}$	Full T _A			1.31	
Б	ON state weeksterness	$I_{OUT} = -100 \text{ mA}, V_{BIAS} = 3.3$	\/ O.\/	T _A = 25°C		1.2	1.5	0
R _{ON}	ON-state resistance	V	$V_{IN} = 2 V$	Full T _A			1.7	Ω
		T _A = 25°C	T _A = 25°C		0.95	1.2		
			$V_{IN} = 1.8 \text{ V}$	Full T _A			1.35	

Over the operating ambient temp −40°C ≤ TA ≤ 85°C (full) and VBIAS = 3.3V. Typical values are for TA = 25°C. (unless otherwise

7.6 Switching Characteristics

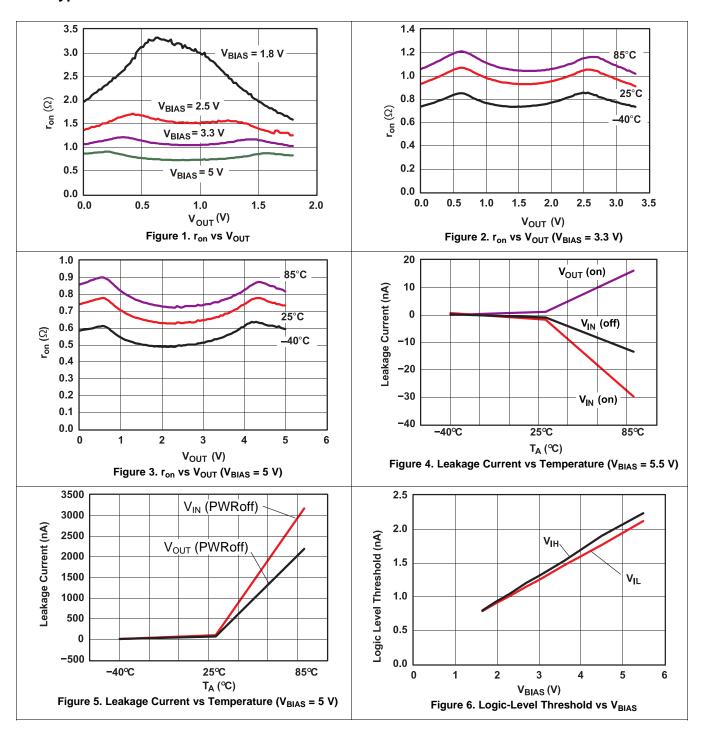
over operating free-air temperature range⁽¹⁾ (unless otherwise noted)

	PARAMETER	TEST CON	TEST CONDITIONS			TYP	MAX	UNIT
	Turn-on time	$V_{OUT} = V_{BIAS}$, $R_L = 50 \Omega$ $C_L = 35 pF$	$T_A = 25^{\circ}C$	V _{BIAS} = 3.3 V	2	4.5	13	
t _{ON}	rum-on time	$V_{OUT} = V_{BIAS}, R_L = 50 \Omega$ $C_L = 35 \text{ pr}$	Full T _A	V _{BIAS} = 3 V to 3.6 V	1		15	ns
	Turn off time	V V B 50.0 C 25.75	$T_A = 25^{\circ}C$	$V_{BIAS} = 3.3 \text{ V}$	3	9	15	
t _{OFF}	Turn-off time	$V_{OUT} = V_{BIAS}$, $R_L = 50 \Omega$ $C_L = 35 pF$	Full T _A	$V_{BIAS} = 3 \text{ V to } 3.6 \text{ V}$	2		20	ns
t _{ON/OFF}	ON/OFF delay time				See	Figure 9		

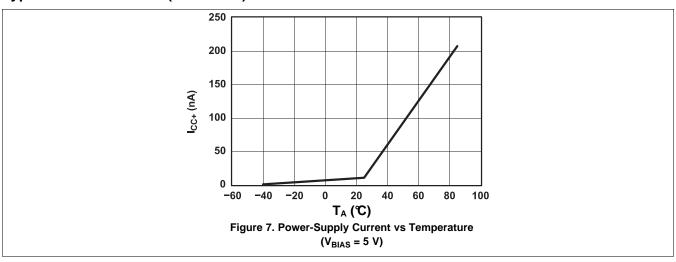
(1) $V_{IN} = V_{ON} = V_{BIAS} = 5V$, $TA = 25^{\circ}C$

Submit Documentation Feedback

Product Folder Links: TPS22860


TRUMENTS

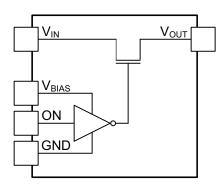
For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.


www.ti.com

7.7 Typical Characteristics

TEXAS INSTRUMENTS

Typical Characteristics (continued)


8 Detailed Description

8.1 Overview

www.ti.com

The TPS22860 is a small, ultra-low leakage current, single channel bi-driectional load switch. The device requires a V_{BIAS} voltage and can operate over an input voltage range of 0 V to V_{BIAS} . It can support a maximum continuous current of 200 mA. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. The TPS22860 is available in two small, space-saving 6-pin SOT-23 and SC70 packages. The device is characterized for operation over the free-air temperature range of -40° C to 85°C.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 ON/OFF Control

The ON input controls the load switch with positive logic.

8.3.2 Pass Transistor

The TPS22860 supports up to 200-mA current flow in either direction. R_{ON} is dependent on V_{BIAS} as shown in Figure 1, Figure 2, and Figure 3.

8.4 Device Functional Modes

Table 1. Functional Table

ON	V _{IN} to V _{OUT}
L	Off
Н	On

TEXAS INSTRUMENTS

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

This section will highlight some of the design considerations when implementing this device in a common application.

9.2 Typical Application

The TPS22860 IC is a high side load switch. The TPS22860 internal components are rated for 1.65-V to 5.5-V supply and support up to 200 mA of load current. The TPS22860 can be used in a variety of applications. Figure 8 below shows a general application of TPS22860 to control the load inrush current.

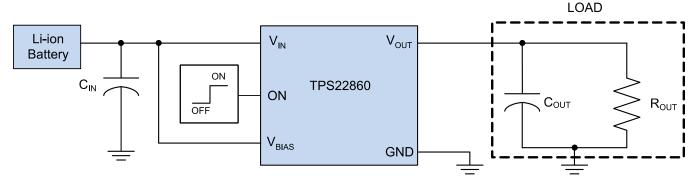


Figure 8. Standard Load Switching Application

9.2.1 Design Requirements

Table 2. Component Table

COMPONENT	DESCRIPTION
C _{IN}	Input capacitance ⁽¹⁾
LOAD	Load resistance and capacitance will affect the output rise time

(1) Required for load inrush current (slew rate) control

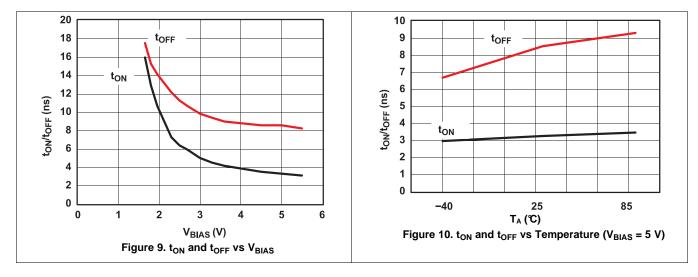
www.ti.com

9.2.2 Detailed Design Procedure

9.2.2.1 Inrush Current

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor, a capacitor must be placed between V_{IN} and GND. A 1- μ F ceramic capacitor, C_{IN} , placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high-current applications. When switching heavy loads, TI recommends to have an input capacitor about 10× higher than the output capacitor to avoid excessive voltage drop. Do not float the ON pin.

9.2.2.2 ON/OFF Interface


The load switch is controlled by the voltage at the ON pin. To turn ON, the input voltage must be larger than V_{IH} and to turn off the voltage must be below V_{IL} .

In applications where an ON/OFF signal is not available, connect ON pin to V_{IN} . The TPS22860 will turn ON/OFF in sync with the input supply connected to V_{IN} .

NOTE

Connect a pull down resistor from the ON pin to GND when the ON/OFF signal is driven by a high-impedance (tri-state) driver.

9.2.3 Application Curves

10 Power Supply Recommendations

The device is designed to operate from a VIN range of 1.65 V to 5.5 V. This supply must be well regulated and placed as close to the device terminal as possible with the recommended 1- μ F bypass capacitor. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. If additional bulk capacitance is required, an electrolytic, tantalum, or ceramic capacitor of 1 μ F may be sufficient.

TEXAS INSTRUMENTS

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- V_{IN} and V_{OUT} traces should be as short and wide as possible to accommodate for high current.
- The V_{IN} pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1- μ F ceramic with X5R or X7R dielectric. This capacitor should be placed as close to the device pins as possible.
- The VOUT pin should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is one-tenth of the V_{IN} bypass capacitor of X5R or X7R dielectric rating. This capacitor should be placed as close to the device pins as possible.

11.2 Thermal Reliability

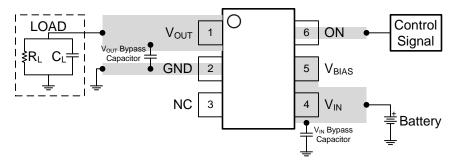
For higher reliability it is recommended to limit TPS22860 IC's die junction temperature to less than 105°C. The IC junction temperature is directly proportional to the on-chip power dissipation. Use the following equation to calculate maximum on-chip power dissipation to achieve the maximum die junction temperature target:

$$PD_{(MAX)} = \left(T_{J(MAX)} - T_{A}\right) \theta_{JA}$$

Where:

T_{J(MAX)} is the target maximum junction temperature.

T_A is the operating ambient temperature.


R $_{\theta JA}$ is the package junction to ambient thermal resistance.

(1)

11.3 Improving Package Thermal Performance

The package $R_{\theta JA}$ value under standard conditions on a High-K board is listed in the *Thermal Information* table. $R_{\theta JA}$ value depends on the PC board layout. An external heat sink and/or a cooling mechanism, like a cold air fan, can help reduce $R_{\theta JA}$ and thus improve device thermal capabilities. Refer to TI's design support web page at www.ti.com/thermal for a general guidance on improving device thermal performance.

11.4 Layout Example

± Indicates connection to ground plane

Figure 11. Basic PCB Layout

Submit Documentation Feedback

www.ti.com

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

2-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TPS22860DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZFNR	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

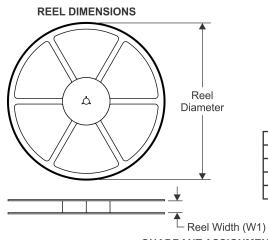
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



2-May-2015

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Feb-2018

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

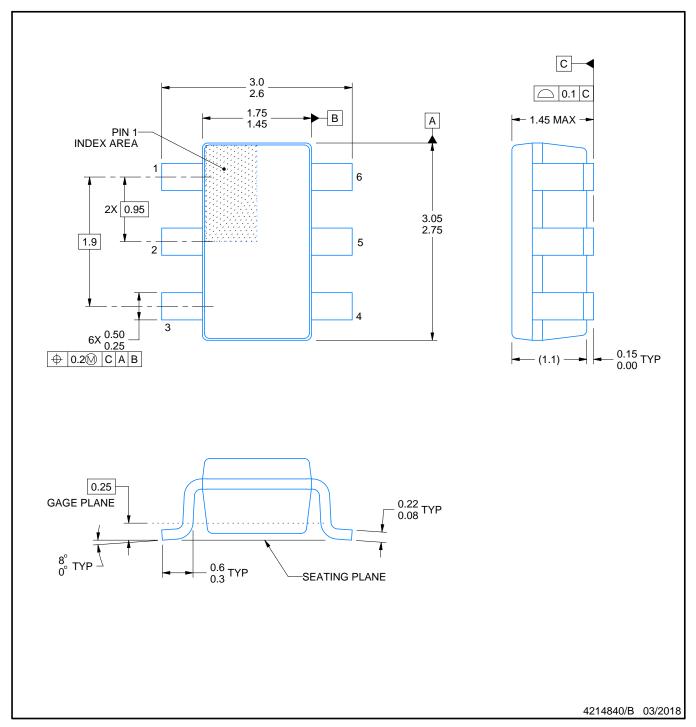
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22860DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Feb-2018



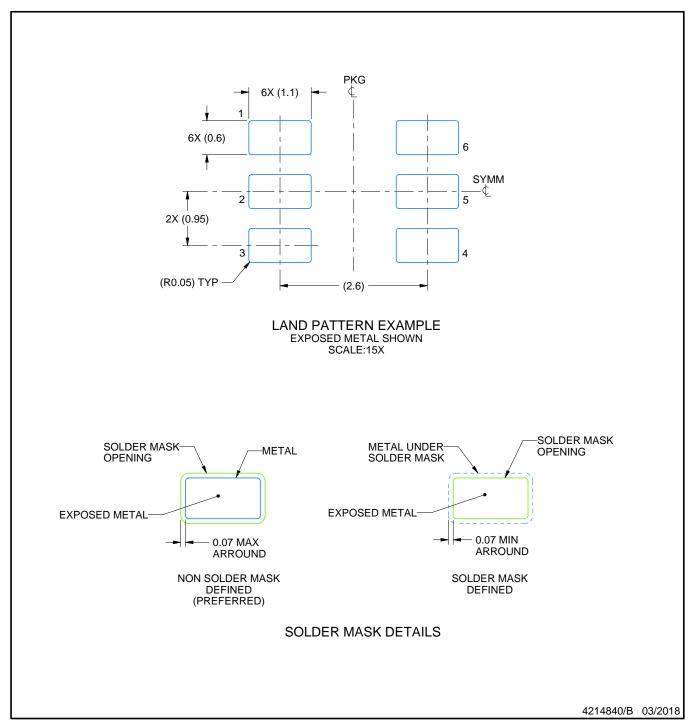
*All dimensions are nominal

Device	Package Type	ackage Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS22860DBVR	SOT-23	DBV	6	3000	183.0	183.0	20.0	

SMALL OUTLINE TRANSISTOR

NOTES:

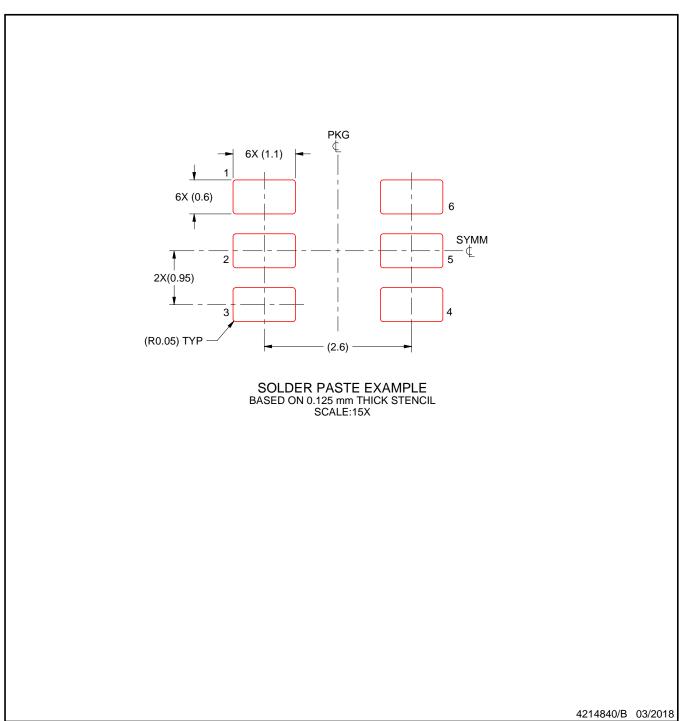
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated