

Order

Now

Texas **INSTRUMENTS**

CC2564C

SWRS199A - APRIL 2016 - REVISED NOVEMBER 2016

CC2564C Dual-Mode Bluetooth® Controller

Device Overview

1.1 **Features**

- TI's Single-Chip *Bluetooth*[®] Solution With Bluetooth Basic Rate (BR), Enhanced Data Rate (EDR), and Low Energy (LE) Support
- Bluetooth 4.2 Component Qualified (Declaration ID: D032801); Compliant up to the HCI Layer
- Highly Optimized for Size-Constrained and Low-• Cost Designs:
 - Single-Ended 50-Ω RF Interface
 - Package Footprint: 76 Terminals, 0.6-mm Pitch, 8-mm × 8-mm (VQFNP-MR)
- BR and EDR Features Include:
 - Up to Seven Active Devices
 - Scatternet: Up to Three Piconets Simultaneously, One as Master and Two as Slaves
 - Up to Two Synchronous Connection Oriented (SCO) Links on the Same Piconet
 - Support for All Voice Air-Coding—Continuously Variable Slope Delta (CVSD), A-Law, µ-Law, Modified Subband Coding (mSBC), and Transparent (Uncoded)
 - Provide an Assisted Mode for HFP 1.6 Wideband Speech (WBS) Profile or A2DP Profile to Reduce Host Processing and Power
 - Support of Multiple Bluetooth Profiles With Enhanced QoS
- Low Energy Features Include:
 - Multiple Sniff Instances Tightly Coupled to Achieve Minimum Power Consumption
 - Independent Buffering for Low Energy Allows Large Numbers of Multiple Connections Without Affecting BR or EDR Performance
 - Built-In Coexistence and Prioritization Handling for BR, EDR, and Low Energy
 - Capabilities of Link Layer Topology Scatternet—Can Act Concurrently as Peripheral and Central

Applications 1.2

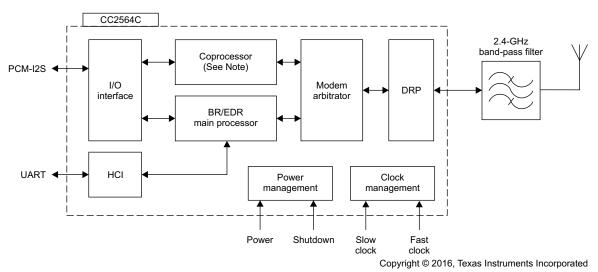
- Wireless Audio Solutions
- mPOS
- **Medical Devices**
- Set-Top Boxes (STBs)

- Network Support for up to 10 Devices
- Time Line Optimization Algorithms to Achieve Maximum Channel Utliization
- Best-in-Class Bluetooth (RF) Performance (TX) Power, RX Sensitivity, Blocking)
 - Class 1 TX Power up to +12 dBm
 - Internal Temperature Detection and Compensation to Ensure Minimal Variation in RF Performance Over Temperature, No **External Calibration Required**
 - Improved Adaptive Frequency Hopping (AFH) Algorithm With Minimum Adaptation Time
 - Longer Range, Including Twice the Range of Other Low-Energy-Only Solutions
- Advanced Power Management for Extended Battery Life and Ease of Design
 - On-Chip Power Management, Including Direct Connection to Battery
 - Low Power Consumption for Active, Standby, and Scan Bluetooth Modes
 - Shutdown and Sleep Modes to Minimize Power Consumption
- Physical Interfaces:
 - UART Interface With Support for Maximum **Bluetooth Data Rates**
 - UART Transport Layer (H4) With Maximum Rate of 4 Mbps
 - Three-Wire UART Transport Layer (H5) With Maximum Rate of 4 Mbps
 - Fully Programmable Digital Pulse-Code Modulation (PCM)-Inter-IC Sound (I2S) Codec Interface
- Flexibility for Easy Stack Integration and Validation Into MCUs and MPUs
- CC256x Bluetooth Hardware Evaluation Tool: • PC-Based Application to Evaluate RF Performance of the Device and Configure Service Pack
- Wearable Devices
- Sensor Hub, Sensor Gateway
 - Home and Factory Automation

1.3 Description

The TI CC2564C device is a complete *Bluetooth*[®] BR, EDR, and low energy HCI solution that reduces design effort and enables fast time to market. Based on TI's seventh-generation Bluetooth core, the CC2564C device provides a product-proven solution that is Bluetooth 4.2 compliant. When coupled with a microcontroller unit (MCU), this HCI device offers best-in-class RF performance with about twice the range of other Bluetooth low-energy solutions. Furthermore, TI's power-management hardware and software algorithms provide significant power savings in all commonly used Bluetooth BR, EDR, and low energy modes of operation.

The TI dual-mode Bluetooth stack software is certified and provided royalty free for MCUs and MPUs. The iPod[®] (MFi) protocol is supported by add-on software packages. For more information, see TI Dual-Mode Bluetooth Stack. Multiple profiles and sample applications are supported including the following:


Serial port profile (SPP) Advanced audio distribution profile (A2DP) Audio/video remote control profile (AVRCP) Hands-free profile (HFP) Human interface device (HID) Generic attribute profile (GATT) Several Bluetooth low energy profiles and services

Device Information⁽¹⁾

	201100	
PART NUMBER	PACKAGE	BODY SIZE
CC2564CRVM	RVM (76)	8.00 mm × 8.00 mm × 0.60 mm

(1) For more information on these devices, see Section 9.

1.4 Functional Block Diagram

Note: The following technologies and assisted modes cannot be used simultaneously with the coprocessor: Bluetooth low energy, assisted HFP 1.6 (WBS), and assisted A2DP. Only one technology or assisted mode can be used at a time.

Figure 1-1. Functional Block Diagram

www.ti.com

EXAS

STRUMENTS

Table of Contents

1	Devi	ce Overview <u>1</u>
	1.1	Features <u>1</u>
	1.2	Applications <u>1</u>
	1.3	Description 2
	1.4	Functional Block Diagram 2
2	Revis	sion History <u>3</u>
3	Devi	ce Comparison 4
	3.1	Related Products 4
4	Term	inal Configuration and Functions 5
	4.1	VQFN-MR Pin Diagram <u>5</u>
5	Spec	ifications 8
	5.1	Absolute Maximum Ratings 8
	5.2	ESD Ratings 8
	5.3	Power-On Hours
	5.4	Recommended Operating Conditions 9
	5.5	Power Consumption Summary 9
	5.6	Electrical Characteristics 11
	5.7	Thermal Resistance Characteristics for VQFN-MR
		(RVM) Package <u>11</u>
	5.8	Timing and Switching Characteristics <u>12</u>
6	Detai	iled Description 23
	6.1	Overview

	6.2	Functional Block Diagram	<u>23</u>
	6.3	Clock Inputs	<u>23</u>
	6.4	Functional Blocks	27
	6.5	Bluetooth BR and EDR Features	<u>38</u>
	6.6	Bluetooth low energy Description	<u>39</u>
	6.7	Bluetooth Transport Layers	<u>40</u>
	6.8	Changes from the CC2564B Device to the	
		CC2564C Device	<u>40</u>
7	Appli	ications, Implementation, and Layout	<u>41</u>
	7.1	Reference Design Schematics and BOM for Power	
		and Radio Connections	<u>41</u>
	7.2	PCB Layout Guidelines	<u>43</u>
8	Devid	ce and Documentation Support	47
	8.1	Third-Party Products Disclaimer	47
	8.2	Tools and Software	47
	8.3	Device Nomenclature	<u>47</u>
	8.4	Community Resources	<u>47</u>
	8.5	Trademarks	<u>48</u>
	8.6	Electrostatic Discharge Caution	<u>48</u>
	8.7	Glossary	<u>48</u>
9		nanical, Packaging, and Orderable mation	<u>49</u>

2 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from April 8, 2016 to October 27, 2016	Page
Updated document to PRODUCTION DATA	<u>1</u>

3 Device Comparison

Table 3-1 lists the features of the CC2564C device.

Table 3-1	. CC2564C	Device	Features
-----------	-----------	--------	----------

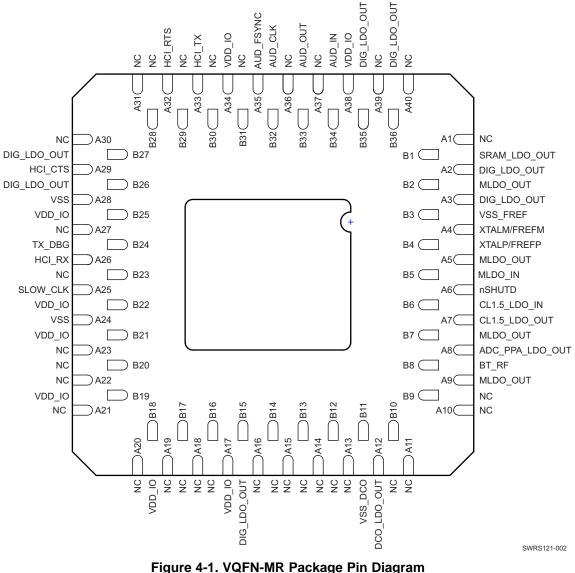
DEVICE	DESCRIPTION	TECHNOLOGY SUPPORTED		ASSISTED MODES SUPPORTED ⁽¹⁾	
DEVICE	DESCRIPTION	BR, EDR	LOW ENERGY	HFP 1.6 (WBS)	A2DP
CC2564C	Bluetooth 4.2 + Bluetooth low energy	\checkmark	\checkmark	\checkmark	

(1) The assisted modes (HFP 1.6 and A2DP) are not supported simultaneously. Furthermore, the assisted modes are not supported simultaneously with Bluetooth low energy.

3.1 Related Products

Wireless Connectivity The wireless connectivity portfolio offers a wide selection of low-power RF solutions suitable for a broad range of application. The offerings range from fully customized solutions to turnkey offerings with precertified hardware and software (protocol).

Companion Products Review products that are frequently purchased or used with the CC2564C product.


Reference Designs for CC2564 The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump-start your system design, all TI Designs include schematic or block diagrams, BOMs and design files to speed your time to market. Search and download designs at ti.com/tidesigns.

4 Terminal Configuration and Functions

4.1 VQFN-MR Pin Diagram

Figure 4-1 shows the bottom view of the pin diagram (VQFN-MR package).

Bottom View

4.1.1 Pin Attributes (VQFN-MR Package)

Table 4-1 describes the pin attributes for the VQFN-MR package.

NAME	NO.	PULL AT	DEF. DIR. ⁽¹⁾	I/O Turno (2)	DESCRIPTION	
I/O Signala		RESET	DIR. ⁽¹⁾	Type ⁽²⁾		
I/O Signals						
AUD_CLK	B32	PD	I/O	HY, 4 mA	PCM clock	Fail-safe
AUD_FSYNC	A35	PD	I/O	4 mA	PCM frame-sync signal	Fail-safe
AUD_IN	B34	PD	I	4 mA	PCM data input	Fail-safe
AUD_OUT	B33	PD	0	4 mA	PCM data output	Fail-safe
HCI_CTS	A29	PU	I	8 mA	HCI UART clear-to-send The device is allowed to send data when HCI_CTS is low.	
HCI_RX	A26	PU	I	8 mA	HCI universal asynchronous receiver/transmitter (UART) data receive	
HCI_RTS	A32	PU	Ο	8 mA	HCI UART request-to-send The host is allowed to send data when HCI_RTS is low.	
HCI_TX	A33	PU	0	8 mA	HCI UART data transmit	
TX_DBG	B24	PU	0	2 mA	TI internal debug messages. TI recommends leaving an internal test point.	
Clock Signals						
SLOW_CLK	A25		I		32.768-kHz clock in	Fail-safe
XTALP/FREFP	B4		I		Fast clock in analog (sine wave) Output terminal of fast-clock crystal	Fail-safe
XTALM/FREFM	A4		I		Fast clock in digital (square wave) Input terminal of fast-clock crystal	Fail-safe
Analog Signals						
BT_RF	B8		I/O		Bluetooth RF I/O	
nSHUTD	A6	PD	I		Shutdown input (active low)	
Power and Ground Signals						
ADC_PPA_LDO_OUT	A8		0		ADC/PPA LDO output	
CL1.5_LDO_IN	B6		I		Power amplifier (PA) LDO input Connect directly to battery	
CL1.5_LDO_OUT	A7		0		PA LDO output	
DCO_LDO_OUT	A12		0		DCO LDO output	
DIG_LDO_OUT	A2, A3, B15, B26, B27, B35, B36		0		Digital LDO output QFN pin B26 or B27 must be shorted to other DIG_LDO_OUT pins on the PCB.	
MLDO_IN	B5		I		Main LDO input Connect directly to battery	
MLDO_OUT	A5, A9, B2, B7		I/O		Main LDO output (1.8-V nominal)	
SRAM_LDO_OUT	B1		0		SRAM LDO output	

Table 4-1. Pin Attributes (VQFN-MR Package)

(1) I = input; O = output; I/O = bidirectional

(2) I/O Type: Digital I/O cells. HY = input hysteresis, current = typical output current

NAME	NO.	PULL AT RESET	DEF. DIR. ⁽¹⁾	l/O Type ⁽²⁾	DESCRIPTION		
VDD_IO	A17, A34, A38, B18, B19, B21, B22, B25		I		I/O power supply (1.8-V nominal)		
VSS	A24, A28		I		Ground		
VSS_DCO	B11		I		DCO ground		
VSS_FREF	B3		I		Fast clock ground		

Table 4-1. Pin Attributes (VQFN-MR Package) (continued)

4.1.2 Connections for Unused Signals (VQFN-MR Package)

Section 4.1.2 lists the connections for unused signals for the VQFN-MR package.

FUNCTION	PIN NUMBER	DESCRIPTION
NC	A1	Not connected
NC	A10	Not connected
NC	A11	Not connected
NC	A14	Not connected
NC	A18	Not connected
NC	A19	Not connected
NC	A20	Not connected
NC	A21	Not connected
NC	A22	Not connected
NC	A23	Not connected
NC	A27	Not connected
NC	A30	Not connected
NC	A31	Not connected
NC	A40	Not connected
NC	B9	Not connected
NC	B10	Not connected
NC	B16	Not connected
NC	B17	Not connected
NC	B20	Not connected
NC	B23	Not connected
NC	A13	TI internal use
NC	A15	TI internal use
NC	A16	TI internal use
NC	A36	TI internal use
NC	A37	TI internal use
NC	A39	TI internal use
NC	B12	TI internal use
NC	B13	TI internal use
NC	B14	TI internal use
NC	B29	TI internal use
NC	B30	TI internal use
NC	B31	TI internal use
NC	B28	TI internal use

7

5 Specifications

Unless otherwise indicated, all measurements are taken at the device pins of the TI test evaluation board (EVB). All specifications are over process, voltage, and temperature, unless otherwise indicated.

5.1 Absolute Maximum Ratings⁽¹⁾

Over operating free-air temperature range (unless otherwise indicated). All parameters are measured as follows: $VDD_IN = 3.6 V$ and $VDD_IO = 1.8 V$ (unless otherwise indicated).

		MIN	MAX	UNIT
Supply voltage	VDD_IN	-0.5	4.8	V ⁽²⁾
Supply voltage	VDDIO_1.8 V	-0.5	2.145	V
Input voltage to analog pins ⁽³⁾		-0.5	2.1	V
Input voltage to all other pins		-0.5	VDD_IO + 0.5	V
Bluetooth RF inputs			10	dBm
Operating ambient temperature, TA ⁽⁴⁾		-40	85	°C
Storage temperature, T _{stg}		-55	125	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2) Maximum allowed depends on accumulated time at that voltage: VDD_IN is defined in Section 7.1.

(3) Analog pins: BT_RF, XTALP, and XTALM

(4) The reference design supports a temperature range of -20° C to $+70^{\circ}$ C because of the operating conditions of the crystal.

5.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±250	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Power-On Hours

DEVICE	CONDITIONS	POWER-ON HOURS
CC2564C	Duty cycle = 25% active and 75% sleep $T_{ambient} = 85^{\circ}C$	15,400 (7 years)

www.ti.com

5.4 **Recommended Operating Conditions**

			MIN	MAX	UNIT
VDD_IN	Power supply voltage		1.7	4.8	V
VDD_IO	I/O power supply voltage		1.62	1.92	V
V _{IH}	High-level input voltage	Default condition	0.65 × VDD_IO	VDD_IO	V
V _{IL}	Low-level input voltage	Default condition	0	0.35 × VDD_IO	V
t _r and t _f	I/O input rise and all times, 10% to 90%—asynchronous mode		1	10	ns
	I/O input rise and fall times, 10% to 90%—synchronous mode (PCM)		1	2.5	ns
		Condition: 0 to 0.1 MHz		60	
		Condition: 0.1 to 0.5 MHz		50	
	Maximum ripple on VDD_IN (sine wave) for 1.8 V (DC-DC) mode	Condition: 0.5 to 2.5 MHz		30	mV_{p-p}
		Condition: 2.5 to 3.0 MHz		15	
		Condition: > 3.0 MHz		5	
	Voltage dips on VDD_IN (VBAT) Duration = 577 μ s to 2.31 ms, period = 4.6 ms			400	mV
	Maximum ambient operating temperature ⁽¹⁾ ⁽²⁾		-40	85	°C

(1) The device can be reliably operated for 7 years at $T_{ambient}$ of 85°C, assuming 25% active mode and 75% sleep mode (15,400 cumulative active power-on hours).

A crystal-based solution is limited by the temperature range required for the crystal to meet 20 ppm. (2)

Power Consumption Summary 5.5

5.5.1 Static Current Consumption

OPERATIONAL MODE	MIN	TYP	MAX	UNIT
Shutdown mode ⁽¹⁾		1	7	μA
Deep sleep mode ⁽²⁾		40	105	μA
Total I/O current consumption in active mode			1	mA
Continuous transmission—GFSK ⁽³⁾			107	mA
Continuous transmission—EDR ⁽⁴⁾⁽⁵⁾			112.5	mA

VBAT + VIO + V_{SHUTDOWN} VBAT + VIO (1)

(2)

(3) At maximum output power dBm

(4) At maximum output power dBm

(5) Both $\pi/4$ DQPSK and 8DPSK

5.5.2 Dynamic Current Consumption

5.5.2.1 Current Consumption for Different Bluetooth BR and EDR Scenarios

Conditions: VDD_IN = 3.6 V, 25°C, 26-MHz XTAL, nominal unit, 10-dBm output power

OPERATIONAL MODE	MASTER AND SLAVE	AVERAGE CURRENT	UNIT
SCO link HV3	Master and slave	13.7	mA
Extended SCO (eSCO) link EV3 64 kbps, no retransmission	Master and slave	13.2	mA
eSCO link 2-EV3 64 kbps, no retransmission	Master and slave	10	mA
GFSK full throughput: TX = DH1, RX = DH5	Master and slave	40.5	mA
EDR full throughput: TX = 2-DH1, RX = 2-DH5	Master and slave	41.2	mA
EDR full throughput: TX = 3-DH1, RX = 3-DH5	Master and slave	41.2	mA
Sniff, four attempts, 1.28 seconds	Master and slave	145	μA
Page or inquiry scan 1.28 seconds, 11.25 ms	Master and slave	320	μA
Page (1.28 seconds) and inquiry (2.56 seconds) scans, 11.25 ms	Master and slave	445	μΑ
A2DP source	Master	13.9	mA
A2DP sink	Master	15.2	mA
Assisted A2DP source	Master	16.9	mA
Assisted A2DP sink	Master	18.1	mA
Assisted WBS EV3; retransmit effort = 2; maximum latency = 8 ms	Master and slave	17.5 and 18.5	mA
Assisted WBS 2EV3; retransmit effort = 2; maximum latency = 12 ms	Master and slave	11.9 and 13	mA

5.5.2.2 Current Consumption for Different Low-Energy Scenarios

Conditions: VDD_IN = 3.6 V, 25°C, nominal unit, 10-dBm output power

MODE		DESCRIPTION	AVERAGE CURRENT	UNIT
Advertising, nonconnectable		Advertising in all three channels 1.28-seconds advertising interval 15 bytes advertise data	114	μΑ
Advertising, discoverable		Advertising in all three channels 1.28-seconds advertising interval 15 bytes advertise data	138	μΑ
Scanning		Listening to a single frequency per window 1.28-seconds scan interval 11.25-ms scan window	324	μA
Connected	Master role	500-ms connection interval	169	-
	Slave role	0-ms slave connection latency Empty TX and RX LL packets	199	μA

5.6 **Electrical Characteristics**

RATING		CONDITION	MIN	MAX	UNIT	
1 Park Jacob and and an Italian M			At 2, 4, 8 mA	0.8 × VDD_IO	VDD_IO	V
High-level output voltage, V _{OH}		At 0.1 mA	VDD_IO - 0.2	VDD_IO	v	
			At 2, 4, 8 mA	0	0.2 × VDD_IO	V
Low-level output voltage, V _{OL}		At 0.1 mA	0	0.2	v	
		Resistance	1		MΩ	
I/O input imp	bedance		Capacitance		5	pF
Output rise a	and fall times, 10% to 90% (digit	al pins)	C _L = 20 pF		10	ns
	PCM–I2S bus, TX_DBG	PU	Typical = 6.5	3.5	9.7	
I/O pull		PD	Typical = 27	9.5	55	
currents		PU	Typical = 100	50	300	μA
	All others PD		Typical = 100	50	360	

5.7 Thermal Resistance Characteristics for VQFN-MR (RVM) Package

over operating free-air temperature range (unless otherwise noted)

	THERMAL METRICS ⁽¹⁾	C/W ⁽²⁾
$R\theta_{ja}$	Junction-to-free-air	34.6
$R\theta_{jctop}$	Junction-to-case-top	17.9
$R\theta_{jcbottom}$	Junction-to-case-bottom	1.6
$R\theta_{jb}$	Junction-to-board	12.0
φ _{jt}	Junction-to-package-top	0.2
φ _{jb}	Junction-to-package-bottom	12.0

For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. (1)

These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [ROJC] value, which is based on a (2) JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:

JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)

JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages •

•

JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements Power dissipation of 2 W and an ambient temperature of 70°C is assumed.

5.8 Timing and Switching Characteristics

5.8.1 Device Power Supply

The CC2564C power-management hardware and software algorithms provide significant power savings, which is a critical parameter in an MCU-based system.

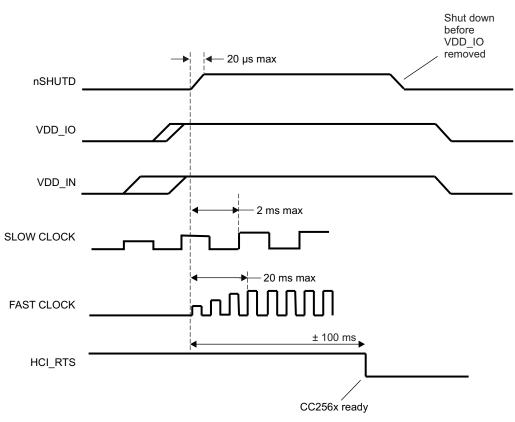
The power-management module is optimized for drawing extremely low currents.

5.8.1.1 Power Sources

The CC2564C device requires two power sources:

- VDD_IN: main power supply for the device
- VDD_IO: power source for the 1.8-V I/O ring

The HCI module includes several on-chip voltage regulators for increased noise immunity and can be connected directly to the battery.


5.8.1.2 Device Power-Up and Power-Down Sequencing

The device includes the following power-up requirements (see Figure 5-1):

- nSHUTD must be low. VDD_IN and VDD_IO are don't care I/O pins when nSHUTD is low. However, signals are not allowed on the I/O pins if I/O power is not supplied, because the I/Os are not fail-safe. Exceptions are SLOW_CLK_IN and AUD_xxx, which are fail-safe and can tolerate external voltages with no VDD_IO and VDD_IN.
- VDD_IO and VDD_IN must be stable before releasing nSHUTD.
- The fast clock must be stable within 20 ms of nSHUTD going high.
- The slow clock must be stable within 2 ms of nSHUTD going high.

The device indicates that the power-up sequence is complete by asserting RTS low, which occurs up to 100 ms after nSHUTD goes high. If RTS does not go low, the device is not powered up. In this case, ensure that the sequence and requirements are met.

Copyright © 2016, Texas Instruments Incorporated

Figure 5-1. Power-Up and Power-Down Sequencing

5.8.1.3 Power Supplies and Shutdown—Static States

The nSHUTD signal puts the device in ultra-low-power mode and performs an internal reset to the device. The rise time for nSHUTD must not exceed 20 µs; nSHUTD must be low for a minimum of 5 ms.

To prevent conflicts with external signals, all I/O pins are set to the high-impedance (Hi-Z) state during shutdown and power up of the device. The internal pull resistors are enabled on each I/O pin, as described in Section 4.1.1. Table 5-1 lists and describes the static operation states.

	VDD_IN ⁽¹⁾	VDD_IO ⁽¹⁾	nSHUTD ⁽¹⁾	PM_MODE	COMMENTS
1	None	None	Asserted	Shutdown	I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.
2	None	None	Deasserted	Not allowed	I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.
3	None	Present	Asserted	Shutdown	I/Os are defined as tri-state pins with internal pullup or pulldown enabled.
4	None	Present	Deasserted	Not allowed	I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.
5	Present	None	Asserted	Shutdown	I/O state is undefined.
6	Present	None	Deasserted	Not allowed	I/O state is undefined. No I/O voltages are allowed on nonfail-safe pins.
7	Present	Present	Asserted	Shutdown	I/Os are defined as tri-state pins with internal pullup or pulldown enabled.
8	Present	Present	Deasserted	Active	See Section 5.8.1.4.

Т	able	5-1.	Power	Modes
---	------	------	-------	-------

(1) The terms *None* or *Asserted* can imply any of the following conditions: directly pulled to ground or driven low, pulled to ground through a pulldown resistor, or left NC or floating (high-impedance output stage).

Copyright © 2016, Texas Instruments Incorporated

5.8.1.4 I/O States in Various Power Modes

CAUTION

Some device I/Os are not fail-safe (see Section 4.1.1). Fail-safe means that the pins do not draw current from an external voltage applied to the pin when I/O power is not supplied to the device. External voltages are not allowed on these I/O pins when the I/O supply voltage is not supplied because of possible damage to the device.

Table 5-2 lists the I/O states in various power modes.

	SHUTDOWN ⁽¹⁾		DEFAULT ACTIVE ⁽¹⁾		DEEP SLEEP ⁽¹⁾	
I/O NAME	I/O State	Pull	I/O State	Pull	I/O State	Pull
HCI_RX	Z	PU	I	PU	I	PU
HCI_TX	Z	PU	O-H		0	
HCI_RTS	Z	PU	O-H		0	
HCI_CTS	Z	PU	I	PU	I	PU
AUD_CLK	Z	PD	I	PD	I	PD
AUD_FSYNC	Z	PD	I	PD	I	PD
AUD_IN	Z	PD	I	PD	I	PD
AUD_OUT	Z	PD	Z	PD	Z	PD
TX_DBG	Z	PU	0			

Table 5-2. I/O States in Various Power Modes

(1) I = input, O = output, Z = Hi-Z, - = no pull, PU = pullup, PD = pulldown, H = high, L = low

5.8.1.5 nSHUTD Requirements

	PARAMETER	MIN	MAX	UNIT
VIH	Operation mode level ⁽¹⁾	1.42	1.98	V
VIL	Shutdown mode level ⁽¹⁾	0	0.4	V
	Minimum time for nSHUT_DOWN low to reset the device	5		ms
t _r and t _f	Rise and fall times		20	μs

(1) An internal pulldown retains shutdown mode when no external signal is applied to this pin.

5.8.2 Clock Specifications

5.8.2.1 Slow Clock Requirements

An external source must supply the slow clock and connect to the SLOW_CLK_IN pin (for example, the host or external crystal oscillator). The source must be a digital signal in the range of 0 to 1.8 V. The accuracy of the slow-clock frequency must be 32.768 kHz \pm 250 ppm for Bluetooth use (as specified in the Bluetooth specification). The external slow clock must be stable within 64 slow-clock cycles (2 ms) following the release of nSHUTD.

	CHARACTERISTICS	CONDITION	MIN	ТҮР	MAX	UNIT
	Input slow-clock frequency			32768		Hz
	Input slow-clock accuracy (Initial + temp + aging)	Bluetooth			±250	ppm
t _r and t _f	Input transition time t _r and t _f (10% to 90%)				200	ns
	Frequency input duty cycle		15%	50%	85%	
VIH		Square wave,	0.65 × VDD_IO		VDD_IO	V peak
V _{IL}	Slow-clock input voltage limits	DC-coupled	0		0.35 × VDD_IO	V peak
	Input impedance		1			MΩ
	Input capacitance				5	pF

5.8.2.2 External Fast Clock Crystal Requirements and Operation

	CHARACTERISTICS	CONDITION	MIN	TYP	MAX	UNIT
f _{in}	Supported crystal frequencies			26, 38.4		MHz
	Frequency accuracy (Initial + temperature + aging)				±20	ppm
		26 MHz, external capacitance = 8 pF I_{osc} = 0.5 mA	650	940		0
Crystal oscillator negative resistance	26 MHz, external capacitance = 20 pF I_{osc} = 2.2 mA	490	710		Ω	

5.8.2.3 Fast Clock Source Requirements (-40°C to +85°C)

CHARACTERISTICS	CONDITION		MIN	TYP	MAX	UNIT
Supported frequencies, F _{REF}				26, 38.4		MHz
Reference frequency accuracy	Initial + temp + aging				±20	ppm
		V _{IL}	-0.2		0.37	V
	Square wave, DC-coupled	V _{IH}	1.0		2.1	V
Fast-clock input voltage limits	Sine wave, AC-coupled		0.4		1.6	V _{p-p}
	Sine wave, DC-coupled		0.4		1.6	V _{p-p}
	Sine wave input limits, DC-coupled		0.0		1.6	V
Fast-clock input rise time (as % of clock period)	Square wave, DC-coupled				10%	
Duty cycle			35%	50%	65%	
	@ offset = 1 kHz				-123.4	
Phase noise for 26 MHz	@ offset = 10 kHz				-133.4	dBc/Hz
	@ offset = 100 kHz				-138.4	

5.8.3 Peripherals

5.8.3.1 UART

Figure 5-2 shows the UART timing diagram.

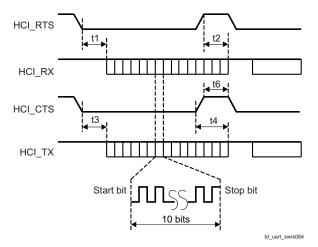


Figure 5-2. UART Timing

Table 5-3 lists the UART timing characteristics.

Table 5-3.	UART	Timing	Characteristics
------------	------	--------	-----------------

SYMBOL	CHARACTERISTICS	CONDITION	MIN	TYP	MAX	UNIT
	Baud rate		37.5		4000	kbps
	Baud rate accuracy per byte	Receive and transmit	-2.5%		1.5%	
	Baud rate accuracy per bit	Receive and transmit	-12.5%		12.5%	
t1	RTS low to RX_DATA on		0	2		μs
t2	RTS high to RX_DATA off	Interrupt set to 1/4 FIFO			16	byte
t3	CTS low to TX_DATA on		0	2		μs
t4	CTS high to TX_DATA off	Hardware flow control			1	byte
t6	CTS-high pulse width		1			bit

Figure 5-3 shows the UART data frame.

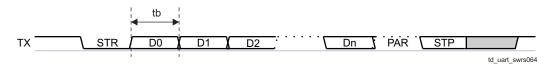


Figure 5-3. Data Frame

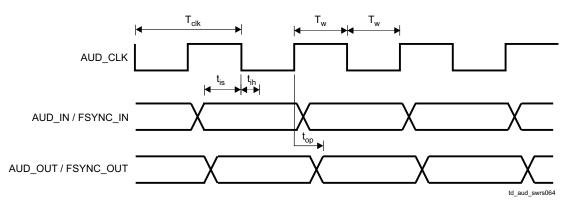

Table 5-4 describes the symbols used in Figure 5-3.

Table 5-4. Data Frame Key

SYMBOL	DESCRIPTION
STR	Start bit
D0Dn	Data bits (LSB first)
PAR	Parity bit (optional)
STP	Stop bit

5.8.3.2 PCM

Figure 5-4 shows the interface timing for the PCM.

Figure 5-4. PCM Interface Timing

Table 5-5 lists the associated PCM master parameters.

Table 5-5. PCM Master

SYMBOL	PARAMETER	CONDITION	MIN	MAX	UNIT
t _{clk}	Cycle time		244.14 (4.096 MHz)	15625 (64 kHz)	ns
t _w	High or low pulse width		50% of T _{clk} min		ns
t _{is}	AUD_IN setup time		25		ns
t _{ih}	AUD_IN hold time		0		ns
t _{op}	AUD_OUT propagation time	40-pF load	0	10	ns
t _{op}	FSYNC_OUT propagation time	40-pF load	0	10	ns

Table 5-6 lists the associated PCM slave parameters.

Table	5-6.	РСМ	Slave
-------	------	-----	-------

SYMBOL	PARAMETER	CONDITION	MIN MAX	UNIT
t _{clk}	Cycle time		66.67 (15 MHz)	ns
t _w	High or low pulse width		40% of T _{clk}	ns
T _{is}	AUD_IN setup time		8	ns
t _{ih}	AUD_IN hold time		0	ns
t _{is}	AUD_FSYNC setup time		8	ns
t _{ih}	AUD_FSYNC hold time		0	ns
t _{op}	AUD_OUT propagation time	40-pF load	0 21	ns

5.8.4 RF Performance

5.8.4.1 Bluetooth BR and EDR RF Performance

All parameters in this section that are fast-clock dependent are verified using a 26-MHz XTAL and 38.4-MHz TCXO.

5.8.4.1.1 Bluetooth Receiver—In-Band Signals

CHARACTERISTICS	CONDITION		MIN	ТҮР	МАХ	BLUETOOTH SPECIFICATION	UNIT
Operation frequency range			2402		2480		MHz
Channel spacing				1			MHz
Input impedance				50			Ω
	GFSK, BER = 0.1%		-91.5	-95		-70	
Sensitivity, dirty TX on ⁽¹⁾	π/4-DQPSK, BER = 0.01%		-90.5	-94.5		-70	dBm
	8DPSK, BER = 0.01%		-81	-87.5		-70]
BER error floor at sensitivity +	π/4-DQPSK		1E–6	1E–7		1E–5	
10 dB, dirty TX off	8DPSK		1E–6			1E–5	
	GFSK, BER = 0.1%		-5			-20	
Maximum usable input power	π/4-DQPSK, BER = 0.1%		-10				dBm
	8DPSK, BER = 0.1%		-10				1
Intermodulation characteristics	Level of interferers (for n = 3, 4, and	d 5)	-36	-30		-39	dBm
	GFSK, cochannel			8	10	11	
	EDR, cochannel	π/4-DQPSK		9.5	11	13]
		8DPSK		16.5	20	21]
	GFSK, adjacent ±1 MHz			-10	-5	0	
	EDR, adjacent ±1 MHz, (image)	π/4-DQPSK		-10	-5	0]
		8DPSK		-5	-1	5]
(2)	GFSK, adjacent +2 MHz			-38	-35	-30]
C/I performance ⁽²⁾ Image = -1 MHz	EDR, adjacent, +2 MHz	π/4-DQPSK		-38	-35	-30	dB
	EDR, adjacent, +2 MH2	8DPSK		-38	-30	-25]
	GFSK, adjacent -2 MHz			-28	-20	-20	
	EDR, adjacent –2 MHz	π/4-DQPSK		-28	-20	-20	
		8DPSK		-22	-13	-13	
	GFSK, adjacent ≥ ±3 MHz			-45	-43	-40	
		π/4-DQPSK		-45	-43	-40	
	EDR, adjacent ≥ ±3 MHz	8DPSK		-44	-36	-33	
RF return loss				-10			dB
RX mode LO leakage	Frf = (received RF – 0.6 MHz)			-63	-58		dBm

(1) Sensitivity degradation up to 3 dB may occur for minimum and typical values where the Bluetooth frequency is a harmonic of the fast clock.

(2) Numbers show ratio of desired signal to interfering signal. Smaller numbers indicate better C/I performance.

5.8.4.1.2 Bluetooth Receiver—General Blocking

CHARACTERISTICS	CONDITION	MIN TYP	UNIT
	30 to 2000 MHz	-6	
Blocking performance over full range, according to Bluetooth	2000 to 2399 MHz	-6	dDate
specification ⁽¹⁾	2484 to 3000 MHz	-6	dBm
	3 to 12.75 GHz	-6	

(1) Exceptions are taken out of the total 24 allowed in the Bluetooth specification.

5.8.4.1.3 Bluetooth Transmitter—GFSK

CHARACTERISTICS		MIN	ТҮР	МАХ	BLUETOOTH SPECIFICATION	UNIT
Maximum RF output	VDD_IN = VBAT		12			dDw
power ⁽¹⁾	VDD_IN = external regulator to 1.8 V		10			dBm
Power variation over Bl	uetooth band	-1		1		dB
Gain control range			30			dB
Power control step			5		2 to 8	dB
Adjacent channel power M–N = 2			-45		≤ -20	dBm
Adjacent channel powe	r M–N > 2		-50		≤ -40	dBm

(1) To modify maximum output power, use an HCI VS command.

5.8.4.1.4 Bluetooth Transmitter—EDR

	CI	HARACTERISTICS	MIN	ТҮР	МАХ	BLUETOOTH SPECIFICATION	UNIT	
	π/4-DQPSK	VDD_IN = VBAT		5.5				
EDR output	7/4-DQP3N	VDD_IN = external regulator to 1.8 V		5.5				
power ⁽¹⁾		VDD_IN = VBAT		5.5			dBm	
	8DPSK	VDD_IN = external regulator to 1.8 V		5.5				
EDR relative	oower		-2		1	-4 to +1	dB	
Power variation	on over Bluetooth	band	-1		1		dB	
Gain control r	ange			30			dB	
Power control	step			5		2 to 8	dB	
Adjacent char	nnel power M–N	= 1		-36		≤ -26	dBc	
Adjacent char	nnel power M–N	= 2		-30		≤ -20	dBm	
Adjacent char	nnel power M–N	> 2		-42		≤ -40	dBm	

(1) To modify maximum output power, use an NCI VS command.

5.8.4.1.5 Bluetooth Modulation—GFSK

	CHARACTERISTICS	со	CONDITION		ΤΥΡ ΜΑΧ	BLUETOOTH SPECIFICATION	UNIT
	-20-dB bandwidth	GFSK			925	≤ 1000	kHz
F1 avg		∆f1avg	Mod data = 4 1 s, 4 0 s: 111100001111		165	140 to 175	kHz
F2 max	Modulation characteristics	Δ f2max ≥ limit for at least 99.9% of all Δ f2max	Mod data = 1010101		130	> 115	kHz
		∆f2avg, ∆f1avg			88%	> 80%	
	Absolute carrier frequency	DH1		-25	25	< ±25	kHz
	drift	DH3 and DH5		-35	35	< ±40	КПД
	Drift rate				15	< 20	kHz/50 µs
	Initial carrier frequency tolerance	f0–fTX		-75	+75	< ±75	kHz

5.8.4.1.6 Bluetooth Modulation—EDR

CHARACTERISTICS	CONDITION	MIN	ТҮР	МАХ	BLUETOOTH SPECIFICATION	UNIT
Carrier frequency stability				±5	≤ 10	kHz
Initial carrier frequency tolerance				±75	±75	kHz
RMS DEVM ⁽¹⁾	π/4-DQPSK		6%		20%	
	8DPSK		6%		13%	
200% DEV(1)	π/4-DQPSK			30%	30%	
99% DEVM ⁽¹⁾	8DPSK			20%	20%	
Peak DEVM ⁽¹⁾	π/4-DQPSK		14%		35%	
	8DPSK		16%		25%	

(1) Maximum performance refers to maximum TX power.

5.8.4.1.7 Bluetooth Transmitter—Out-of-Band and Spurious Emissions

CHARACTERISTICS	CONDITION	ТҮР	MAX	UNIT
Second harmonic ⁽¹⁾		-14	-2	dBm
Third harmonic ⁽¹⁾	Measured at maximum output power	-10	-6	dBm
Fourth harmonics ⁽¹⁾		–19	-11	dBm

(1) Meets FCC and ETSI requirements with external filter shown in Figure 7-1.

5.8.4.2 Bluetooth low energy RF Performance

All parameters in this section that are fast-clock dependent are verified using a 26-MHz XTAL and a 38.4-MHz TCXO.

5.8.4.2.1 Bluetooth low energy Receiver—In-Band Signals

CHARACTERISTIC	CONDITION	MIN	ТҮР	МАХ	BLUETOOTH low energy SPECIFICATION	UNIT
Operation frequency range		2402		2480		MHz
Channel spacing			2			MHz
Input impedance			50			Ω
Sensitivity, dirty TX on ⁽¹⁾	PER = 30.8%; dirty TX on		-96		≤ -70	dBm
Maximum usable input power	GMSK, PER = 30.8%	-5			≥ –10	dBm
Intermodulation characteristics	Level of interferers (for $n = 3, 4, 5$)		-30		≥ –50	dBm
	GMSK, cochannel		8		≤ 21	
	GMSK, adjacent ±1 MHz		-5		≤ 15	
C/I performance ⁽²⁾ Image = -1 MHz	GMSK, adjacent +2 MHz		-45		≤ –17	dB
	GMSK, adjacent –2 MHz		-22		≤ –15	
	GMSK, adjacent ≥ ±3 MHz		-47		≤ –27	
RX mode LO leakage	Frf = (received RF – 0.6 MHz)		-63			dBm

(1) Sensitivity degradation up to 3 dB may occur where the Bluetooth low energy frequency is a harmonic of the fast clock.

(2) Numbers show wanted signal-to-interfering signal ratio. Smaller numbers indicate better C/I performance.

5.8.4.2.2 Bluetooth low energy Receiver—General Blocking

CHARACTERISTICS	CONDITION	MIN TYP	BLUETOOTH low energy SPECIFICATION	UNIT
	30 to 2000 MHz	–15	≥ -30	
range, according to Bluetooth low energy specification ⁽¹⁾	2000 to 2399 MHz	–15	≥ –35	alDate
	2484 to 3000 MHz	–15	≥ –35	dBm
	3 to 12.75 GHz	–15	≥-30	

(1) Exceptions are taken out of the total 10 allowed in the Bluetooth low energy specification.

5.8.4.2.3 Bluetooth low energy Transmitter

	CHARACTERISTICS	MIN TYP	МАХ	BLUETOOTH low energy SPECIFICATION	UNIT
	VDD_IN = VBAT	12 ⁽¹⁾		≤10	dDm
RF output power	VDD_IN = External regulator to 1.8 V	10		≤10	dBm
Power variation over	er Bluetooth low energy band		1		dB
Adjacent channel power M-N = 2		-45		≤ -20	dBm
Adjacent channel p	ower M-N > 2	-50		≤ -30	dBm

(1) To achieve the Bluetooth low energy specification of 10-dBm maximum, an insertion loss of > 2 dB is assumed between the RF ball and the antenna. Otherwise, use an HCI VS command to modify the output power.

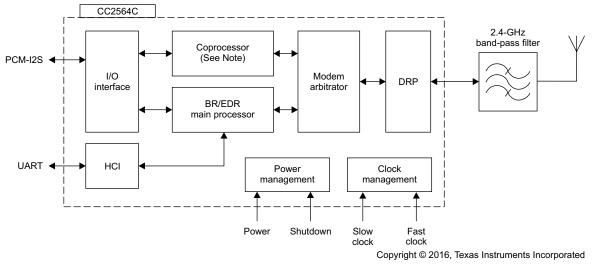
5.8.4.2.4 Bluetooth low energy Modulation

CHAI	RACTERISTICS	CONDITION		ΜΙΝ	ТҮР	МАХ	BLUETOOTH low energy SPECIFICATION	UNIT
∆f1 avg		∆f1avg	Mod data = 4 1s, 4 0 s: 1111000011110000	240	250	260	225 to 275	kHz
∆f2 max	Modulation characteristics	Δ f2max ≥ limit for at least 99.9% of all Δ f2max	Mod data = 1010101	185	210		≥ 185	kHz
		∆f2avg, ∆f1avg		0.85	0.9		≥ 0.8	
	Absolute carrier frequency drift			-25		25	≤ ±50	kHz
	Drift rate					15	≤ 20	kHz/50 ms
	Initial carrier frequency tolerance			-75		75	≤ ±100	kHz

5.8.4.2.5 Bluetooth low energy Transceiver, Out-Of-Band and Spurious Emissions

CHARACTERISTICS	CONDITION	ТҮР	MAX	UNIT
Second harmonic ⁽¹⁾		-14	-2	dBm
Third harmonic ⁽¹⁾	Measured at maximum output power	-10	-6	dBm
Fourth harmonics ⁽¹⁾		-19	-11	dBm

(1) Meets FCC and ETSI requirements with external filter shown in Figure 7-1.



6 Detailed Description

6.1 Overview

The CC2564C architecture comprises a DRP and a point-to-multipoint baseband core. The architecture is based on a single-processor ARM7TDMI[®] core. The device includes several on-chip peripherals to enable easy communication with a host system and the Bluetooth BR, EDR, and low energy core.

6.2 Functional Block Diagram

NOTE: The following technologies and assisted modes cannot be used simultaneously with the coprocessor: Bluetooth low energy, assisted HFP 1.6 (WBS), and assisted A2DP. Only one technology or assisted mode can be used at a time.

Figure 6-1. CC2564C Functional Block Diagram

6.3 Clock Inputs

This section describes the available clock inputs. For specifications, see Section 5.8.2.

6.3.1 Slow Clock

An external source must supply the slow clock and connect to the SLOW_CLK_IN pin (for example, the host or external crystal oscillator). The source must be a digital signal in the range of 0 V to 1.8 V. The accuracy of the slow-clock frequency must be 32.768 kHz \pm 250 ppm for Bluetooth use (as specified in the Bluetooth specification). The external slow clock must be stable within 64 slow-clock cycles (2 ms) following the release of nSHUTD.

6.3.2 Fast Clock Using External Clock Source

An external clock source is fed to an internal pulse-shaping cell to provide the fast-clock signal for the device. The device incorporates an internal, automatic clock-scheme detection mechanism that automatically detects the fast-clock scheme used and configures the FREF cell accordingly. This mechanism ensures that the electrical characteristics (loading) of the fast-clock input remain static regardless of the scheme used and eliminates any power-consumption penalty-versus-scheme used.

The frequency variation of the fast-clock source must not exceed ± 20 ppm (as defined by the Bluetooth specification).

The external clock can be AC- or DC-coupled, sine or square wave.

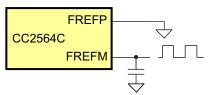

6.3.2.1 External F_{REF} DC-Coupled

Figure 6-2 and Figure 6-3 show the clock configuration when using a square wave, DC-coupled external source for the fast-clock input.

NOTE

A shunt capacitor with a range of 10 nF must be added on the oscillator output to reject high harmonics and shape the signal to be close to a sinusoidal waveform.

TI recommends using only a dedicated LDO to feed the oscillator. Do not use the same VIO for the oscillator and the CC2564C device.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-2. Clock Configuration (Square Wave, DC-Coupled)

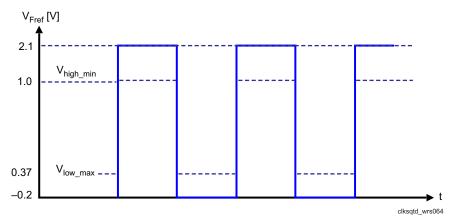
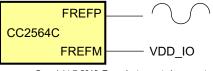



Figure 6-3. External Fast Clock (Square Wave, DC-Coupled)

Figure 6-4 and Figure 6-5 show the clock configuration when using a sine wave, DC-coupled external source for the fast clock input.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-4. Clock Configuration (Sine Wave, DC-Coupled)

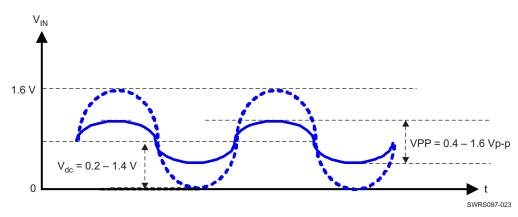


Figure 6-5. External Fast Clock (Sine Wave, DC-Coupled)

6.3.2.2 External F_{REF} Sine Wave, AC-Coupled

Figure 6-6 and Figure 6-7 show the configuration when using a sine wave, AC-coupled external source for the fast-clock input.

Copyright © 2016, Texas Instruments Incorporated

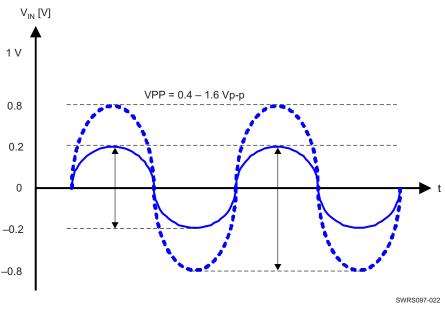
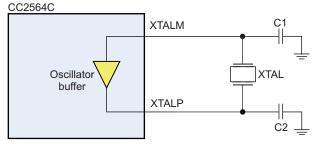


Figure 6-7. External Fast Clock (Sine Wave, AC-Coupled)


In cases where the input amplitude is greater than 1.6 V_{p-p} , the amplitude can be reduced to within limits. Using a small series capacitor forms a voltage divider with the internal input capacitance of approximately 2 pF to provide the required amplitude at the device input.

6.3.2.3 Fast Clock Using External Crystal

The CC2564C device incorporates an internal crystal oscillator buffer to support a crystal-based fast-clock scheme. The supported crystal frequencies are 26 and 38.4 MHz.

The frequency accuracy of the fast-clock source must not exceed ± 20 ppm (including the accuracy of the capacitors, as specified in the Bluetooth specification).

Figure 6-8 shows the recommended fast-clock circuitry.

Copyright © 2016, Texas Instruments Incorporated

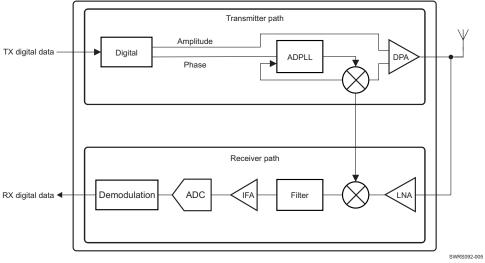
Figure 6-8. Fast-Clock Crystal Circuit

Table 6-1 lists component values for the fast-clock crystal circuit.

Table 6-1. Fast-Clock Crystal Circuit Component Values

FREQ (MHz)	C1 (pF) ⁽¹⁾	C2 (pF) ⁽¹⁾
26	12	12

 To achieve the required accuracy, values for C1 and C2 must be taken from the crystal manufacturer's data sheet and layout considerations.



6.4 Functional Blocks

6.4.1 RF

The CC2564C device is the third generation of Bluetooth single-chip devices using DRP architecture from TI. Modifications and new features added to the DRP further improve radio performance.

Figure 6-9 shows the DRP block diagram.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-9. DRP Block Diagram

6.4.1.1 Receiver

The receiver uses near-zero-IF architecture to convert the RF signal to baseband data. The signal received from the external antenna is input to a single-ended low-noise amplifier (LNA) and passed to a mixer that downconverts the signal to IF, followed by a filter and amplifier. The signal is then quantized by a sigma-delta analog-to-digital converter (ADC) and further processed to reduce the interference level.

The demodulator digitally downconverts the signal to zero-IF and recovers the data stream using an adaptive-decision mechanism. The demodulator includes EDR processing with:

- State-of-the-art performance
- A maximum-likelihood sequence estimator (MLSE) to improve the performance of basic-rate GFSK sensitivity
- Adaptive equalization to enhance EDR modulation

New features include:

- LNA input range narrowed to increase blocking performance
- Active spur cancellation to increase robustness to spurs

6.4.1.2 Transmitter

The transmitter is an all-digital, sigma-delta phase-locked loop (ADPLL) based with a digitally controlled oscillator (DCO) at 2.4 GHz as the RF clock. The transmitter directly modulates the digital PLL. The power amplifier is also digitally controlled. The transmitter uses the polar-modulation technique. While the phase-modulated control word is fed to the ADPLL, the amplitude-modulated controlled word is fed to the class-E amplifier to generate a Bluetooth standard-compliant RF signal.

New features include:

- Improved TX output power
- LMS algorithm to improve the differential error vector magnitude (DEVM)

6.4.2 Host Controller Interface

The CC2564C device incorporates one UART module dedicated to the HCI transport layer. The HCI transports commands, events, and ACL between the device and the host using HCI data packets.

The CC2564C device supports the H4 protocol (4-wire UART) with hardware flow control and the H5 protocol (3-wire UART) with software flow control. The CC2564C device automatically detects the protocol on reception of the first command.

The maximum baud rate of the UART module is 4 Mbps; however, the default baud rate after power up is set to 115.2 kbps. The baud rate can thereafter be changed with a VS command. The device responds with a command complete event (still at 115.2 kbps), after which the baud rate change occurs.

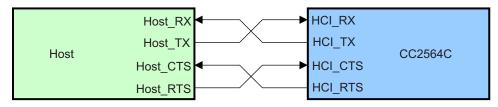
The UART module includes the following features:

- Receiver detection of break, idle, framing, FIFO overflow, and parity error conditions
- Transmitter underflow detection
- CTS and RTS hardware flow control (H4 protocol)
- XON and XOFF software flow control (H5 protocol)

Table 6-2 lists the UART module default settings.

PARAMETER	VALUE
Bit rate	115.2 kbps
Data length	8 bits
Stop bit	1
Parity	None

Table 6-2. UART Module Default Settings


6.4.2.1 4-Wire UART Interface—H4 Protocol

The H4 UART Interface includes four signals:

- TX
- RX
- CTS
- RTS

Flow control between the host and the CC2564C device is bytewise by hardware.

Figure 6-10 shows the H4 UART interface.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-10. H4 UART Interface

When the UART RX buffer of the device passes the flow control threshold, it sets the HCI_RTS signal high to stop transmission from the host.

When the HCI_CTS signal is set high, the device stops transmission on the interface. If HCI_CTS is set high while transmitting a byte, the device finishes transmitting the byte and stops the transmission.

The H4 protocol device includes a mechanism that handles the transition between active mode and sleep mode. The protocol occurs through the CTS and RTS UART lines and is known as the enhanced HCI low level (eHCILL) power-management protocol.

For more information on the H4 UART protocol, see Volume 4 Host Controller Interface, Part A UART Transport Layer of the Bluetooth Core Specifications (www.bluetooth.org/en-us/specification/adoptedspecifications).

6.4.2.2 3-Wire UART Interface—H5 Protocol

The H5 UART interface consists of three signals (see Figure 6-11):

- TX
- RX
- GND

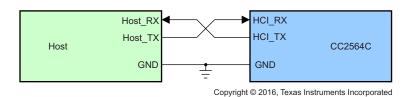


Figure 6-11. H5 UART Interface

The H5 protocol supports the following features:

- Software flow control (XON/XOFF)
- Power management using the software messages:
 - WAKEUP
 - WOKEN
 - SLEEP
- CRC data integrity check

For more information on the H5 UART protocol, see Volume 4 Host Controller Interface, Part D Three-Wire UART Transport Layer of the Bluetooth Core Specifications (www.bluetooth.org/en-us/specification/adoptedspecifications).

6.4.3 Digital Codec Interface

The codec interface is a fully programmable port to support seamless interfacing with different PCM and I2S codec devices. The interface includes the following features:

- Two voice channels
- Master and slave modes
- All voice coding schemes defined by the Bluetooth specification: linear, A-Law, and µ-Law
- Long and short frames
- · Different data sizes, order, and positions
- High flexibility to support a variety of codecs
- Bus sharing: Data_Out is in the Hi-Z state when the interface is not transmitting voice data.

6.4.3.1 Hardware Interface

The interface includes four signals:

- Clock: configurable direction (input or output)
- Frame_Sync and Word_Sync: configurable direction (input or output)
- Data_In: input
- Data_Out: output or tri-state signal

The CC2564C device can be the master of the interface when generating the Clock and Frame_Sync signals or the slave when receiving these two signals.

For slave mode, clock input frequencies of up to 15 MHz are supported. At clock rates above 12 MHz, the maximum data burst size is 32 bits.

For master mode, the device can generate any clock frequency from 64 kHz to 4.096 MHz.

6.4.3.2 I2S

When the codec interface is configured to support the I2S protocol, these settings are recommended:

- Bidirectional, full-duplex interface
- Two time slots per frame: time slot 0 for the left channel audio data; and time slot 1 for the right channel audio data
- The length of each time slot is configurable up to 40 serial clock cycles, and the length of the frame is configurable up to 80 serial clock cycles

6.4.3.3 Data Format

The data format is fully configurable:

- The data length can be from 8 to 320 bits in 1-bit increments when working with 2 channels, or up to 640 bits when working with 1 channel. The data length can be set independently for each channel.
- The data position within a frame is also configurable within 1 clock (bit) resolution and can be set independently (relative to the edge of the Frame_Sync signal) for each channel.
- The Data_In and Data_Out bit order can be configured independently. For example; Data_In can start with the most significant bit (MSB); Data_Out can start with the least significant bit (LSB). Each channel is separately configurable. The inverse bit order (that is, LSB first) is supported only for sample sizes up to 24 bits.
- Data_In and Data_Out are not required to be the same length.
- The Data_Out line is configured to Hi-Z output between data words. Data_Out can also be set for permanent Hi-Z output, regardless of the data output. This configuration allows the device to be a bus slave in a multislave PCM environment. At power up, Data_Out is configured as Hi-Z output.

6.4.3.4 Frame-Idle Period

The codec interface handles frame-idle periods, during which the clock pauses and becomes 0 at the end of the frame after all data are transferred.

The device supports frame-idle periods both as master and slave of the codec bus.

When the device is the master of the interface, the frame-idle period is configurable. There are two configurable parameters:

- Clk_Idle_Start: indicates the number of clock cycles from the beginning of the frame to the beginning of the frame-idle period. After Clk_Idle_Start clock cycles, the clock becomes 0.
- Clk_ldle_End: indicates the time from the beginning of the frame to the end of the frame-idle period. The time is given in multiples of clock periods.

The delta between Clk_Idle_Start and Clk_Idle_End is the clock idle period.

For example, for clock rate = 1 MHz, frame sync period = 10 kHz, Clk_Idle_Start = 60, Clk_Idle_End = 90.

Between both Frame_Sync signals there are 70 clock cycles (instead of 100). The clock idle period starts 60 clock cycles after the beginning of the frame and lasts 90 - 60 = 30 clock cycles. Thus, the idle period ends 100 - 90 = 10 clock cycles before the end of the frame. The data transmission must end before the beginning of the idle period.

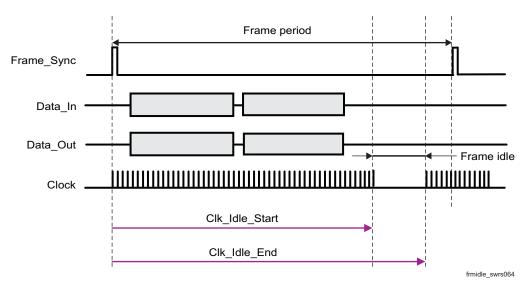


Figure 6-12 shows the frame idle timing.

Figure 6-12. Frame Idle Period

6.4.3.5 Clock-Edge Operation

The codec interface of the device can work on the rising or the falling edge of the clock and can sample the Frame_Sync signal and the data at inversed polarity.

Figure 6-13 shows the operation of a falling-edge-clock type of codec. The codec is the master of the bus. The Frame_Sync signal is updated (by the codec) on the falling edge of the clock and is therefore sampled (by the device) on the next rising clock. The data from the codec is sampled (by the device) on the falling edge of the clock.

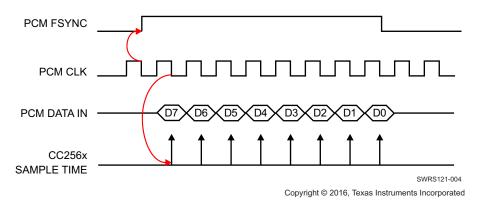
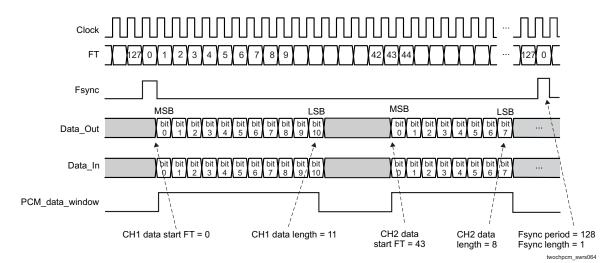



Figure 6-13. Negative Clock Edge Operation

6.4.3.6 Two-Channel Bus Example

Figure 6-14 shows a 2-channel bus in which the two channels have different word sizes and arbitrary positions in the bus frame.

NOTE: FT stands for frame timer.

RUMENTS

www.ti.com

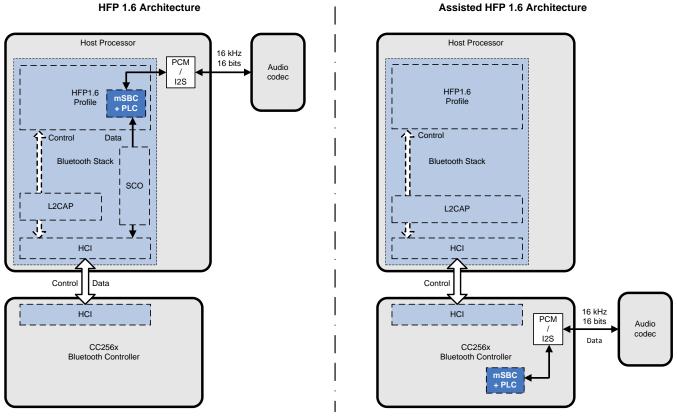
Figure 6-14. 2-Channel Bus Timing

6.4.4 Assisted Modes

The CC2564C device contains an embedded coprocessor that can be used for multiple purposes (see Figure 1-1). The CC2564C device uses the coprocessor to perform the LE functionality or to execute the assisted HFP 1.6 (WBS) or assisted A2DP functions. Only one of these functions can be executed at a time because they all use the same resources (that is, the coprocessor; see Table 3-1 for the modes of operation supported by each device).

This section describes the assisted HFP 1.6 (WBS) and assisted A2DP modes of operation. These modes of operation minimize host processing and power by taking advantage of the device coprocessor to perform the voice and audio SBC processing required in HFP 1.6 (WBS) and A2DP profiles. This section also compares the architecture of the assisted modes with the common implementation of the HFP 1.6 and A2DP profiles.

The assisted HFP 1.6 (WBS) and assisted A2DP modes of operation comply fully with the HFP 1.6 and A2DP Bluetooth specifications. For more information on these profiles, see the corresponding Bluetooth Profile Specification (www.bluetooth.org/en-us/specification/adopted-specifications).


6.4.4.1 Assisted HFP 1.6 (WBS)

The *HFP 1.6 Profile Specification* adds the requirement for WBS support. The WBS feature allows twice the voice quality versus legacy voice coding schemes at the same air bandwidth (64 kbps). This feature is achieved using a voice sampling rate of 16 kHz, a modified subband coding (mSBC) scheme, and a packet loss concealment (PLC) algorithm. The mSBC scheme is a modified version of the mandatory audio coding scheme used in the A2DP profile with the parameters listed in Table 6-3.

PARAMETER	VALUE
Channel mode	Mono
Sampling rate	16 kHz
Allocation method	Loudness
Subbands	8
Block length	15
Bitpool	26

Table 6-3. mSBC Parameters

The assisted HFP 1.6 mode of operation implements this WBS feature on the embedded CC2564C coprocessor. That is, the mSBC voice coding scheme and the PLC algorithm are executed in the CC2564C coprocessor rather than in the host, thus minimizing host processing and power. One WBS connection at a time is supported, and WBS and NBS connections cannot be used simultaneously in this mode of operation. Figure 6-15 shows the architecture comparison between the common implementation of the HFP 1.6 profile and the assisted HFP 1.6 solution.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-15. HFP 1.6 Architecture Versus Assisted HFP 1.6 Architecture

For detailed information on the HFP 1.6 profile, see the *Hands-Free Profile 1.6 Specification* (www.bluetooth.org/en-us/specification/adopted-specifications).

6.4.4.2 Assisted A2DP

The advanced audio distribution profile (A2DP) enables wireless transmission of high-quality mono or stereo audio between two devices. A2DP defines two roles:

- A2DP source is the transmitter of the audio stream.
- A2DP sink is the receiver of the audio stream.

A typical use case streams music from a tablet, phone, or PC (the A2DP source) to headphones or speakers (the A2DP sink). This section describes the architecture of these roles and compares them with the corresponding assisted-A2DP architecture. To use the air bandwidth efficiently, the audio data must be compressed in a proper format. The A2DP mandates support of the SBC scheme. Other audio coding algorithms can be used; however, both Bluetooth devices must support the same coding scheme. SBC is the only coding scheme spread out in all A2DP Bluetooth devices; thus, it is the only coding scheme supported in the assisted A2DP modes. Table 6-4 lists the recommended parameters for the SBC scheme in the A2DP modes.

Table 6-4. Recommended Parameters for the SBC Scheme in Assisted A2DP Modes

SBC		MID QU	JALITY		HIGH QUALITY				
ENCODER SETTINGS ⁽¹⁾	МО	MONO		JOINT STEREO		MONO		STEREO	
Sampling frequency (kHz)	44.1	48	44.1	48	44.1	48	44.1	48	
Bitpool value	19	18	35	33	31	29	53	51	
Resulting frame length (bytes)	46	44	83	79	70	66	119	115	
Resulting bit rate (Kbps)	127	132	229	237	193	198	328	345	

(1) Other settings: Block length = 16; allocation method = loudness; subbands = 8.

The SBC scheme supports a wide variety of configurations to adjust the audio quality. Table 6-5 through Table 6-12 list the supported SBC capabilities in the assisted A2DP modes.

Table 6-5. Channel Modes

CHANNEL MODE	STATUS
Mono	Supported
Dual channel	Supported
Stereo	Supported
Joint stereo	Supported

Table 6-6. Sampling Frequency

SAMPLING FREQUENCY (kHz)	STATUS
16	Supported
44.1	Supported
48	Supported

Table 6-7. Block Length

BLOCK LENGTH	STATUS
4	Supported
8	Supported
12	Supported
16	Supported

Table 6-8. Subbands

SUBBANDS	STATUS	
4	Supported	
8	Supported	

Table 6-9. Allocation Method

ALLOCATION METHOD	STATUS
SNR	Supported
Loudness	Supported

Table 6-10. Bitpool Values

BITPOOL RANGE	STATUS
Assisted A2DP sink: 2-54	Supported
Assisted A2DP source: 2-57	Supported

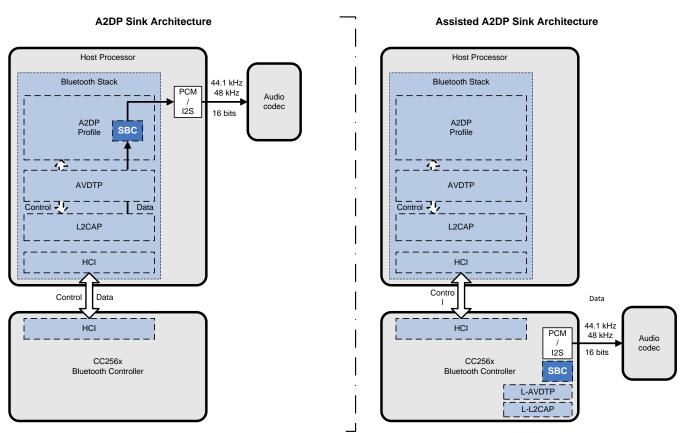
Table 6-11. L2CAP MTU Size

L2CAP MTU SIZE (BYTES)	STATUS
Assisted A2DP sink: 260-800	Supported
Assisted A2DP source: 260–1021	Supported

Table 6-12. Miscellaneous Parameters

ITEM	VALUE	STATUS
A2DP content protection	Protected	Not supported
AVDTP service	Basic type	Supported
L2CAP mode	Basic mode	Supported
L2CAP flush	Nonflushable	Supported

For detailed information on the A2DP profile, see the A2DP Profile Specification at Adopted Bluetooth Core Specifications.


6.4.4.2.1 Assisted A2DP Sink

The role of the A2DP sink is to receive the audio stream in an A2DP Bluetooth connection. In this role, the A2DP layer and its underlying layers are responsible for link management and data decoding. To handle these tasks, two logic transports are defined:

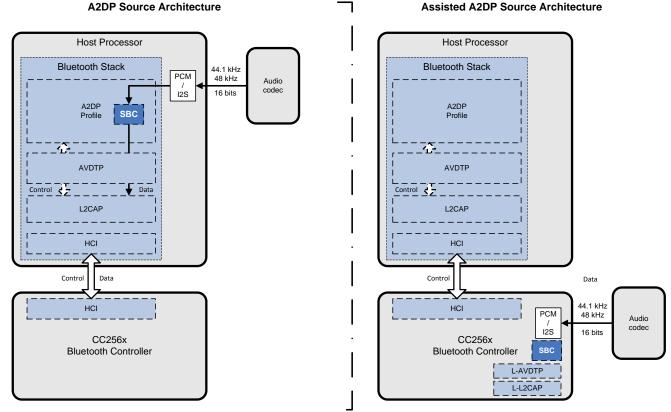
- Control and signaling logic transport
- Data packet logic transport

The assisted A2DP takes advantage of this modularity to handle the data packet logic transport in the CC2564C device. First, the assisted A2DP implements a light L2CAP layer (L-L2CAP) and light AVDTP layer (L-AVDTP) to defragment the packets. Then the assisted A2DP performs the SBC decoding on-chip to deliver raw audio data through the device PCM–I2S interface. Figure 6-16 shows the comparison between a common A2DP sink architecture and the assisted A2DP sink architecture.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-16. A2DP Sink Architecture Versus Assisted A2DP Sink Architecture

For more information on the A2DP sink role, see the A2DP Profile Specification at Adopted Bluetooth Core Specifications.


6.4.4.2.2 Assisted A2DP Source

The role of the A2DP source is to transmit the audio stream in an A2DP Bluetooth connection. In this role, the A2DP layer and its underlying layers are responsible for link management and data encoding. To handle these tasks, two logic transports are defined:

- Control and signaling logic transport
- Data packet logic transport

The assisted A2DP takes advantage of this modularity to handle the data packet logic transport in the CC2564C device. First, the assisted A2DP encodes the raw data from the CC2564C PCM–I2S interface using an on-chip SBC encoder. Then the assisted A2DP implements an L-L2CAP layer and an L-AVDTP layer to fragment and packetize the encoded audio data. Figure 6-17 shows the comparison between a common A2DP source architecture and the assisted A2DP source architecture.

Copyright © 2016, Texas Instruments Incorporated

Figure 6-17. A2DP Source Architecture Versus Assisted A2DP Source Architecture

For more information on the A2DP source role, see the A2DP Profile Specification at Adopted Bluetooth Core Specifications.

6.5 Bluetooth BR and EDR Features

The CC2564C device complies with the *Bluetooth* 4.2 specification up to the HCI layer (for family members and technology supported, see Table 3-1):

- Up to seven active devices
- Scatternet: Up to three piconets simultaneously, one as master and two as slaves
- Up to two SCO links on the same piconet
- Very fast AFH algorithm for asynchronous connection-oriented link (ACL) and eSCO link
- Supports typical 12-dBm TX power without an external power amplifier (PA), thus improving Bluetooth link robustness
- DRP single-ended 50- Ω I/O for easy RF interfacing
- Internal temperature detection and compensation to ensure minimal variation in RF performance over temperature
- Includes a 128-bit hardware encryption accelerator as defined by the Bluetooth specifications

- Flexible PCM and I2S digital codec interface:
 - Full flexibility of data format (linear, A-Law, µ-Law)
 - Data width
 - Data order
 - Sampling
 - Slot positioning
 - Master and slave modes
 - High clock rates up to 15 MHz for slave mode (or 4.096 MHz for master mode)
- Support for all voice air-coding
 - CVSD
 - A-Law
 - µ-Law
 - Transparent (uncoded)
 - mSBC
- The CC2564C device provides an assisted mode for the HFP 1.6 (wideband speech [WBS]) profile or A2DP profile to reduce host processing and power.

6.6 Bluetooth low energy Description

The CC2564C device complies with the Bluetooth 4.2 specification up to the HCl layer (for the family members and technology supported, see Table 3-1):

- Solution optimized for proximity and sports use cases
- Supports up to 10 simultaneous connections
- Multiple sniff instances that are tightly coupled to achieve minimum power consumption
- Independent buffering for low energy, allowing large numbers of multiple connections without affecting BR or EDR performance
- Built-in coexistence and prioritization handling

NOTE

The assisted modes (HFP 1.6 and A2DP) are not available when Bluetooth low energy is enabled.

6.7 Bluetooth Transport Layers

Figure 6-18 shows the Bluetooth transport layers.

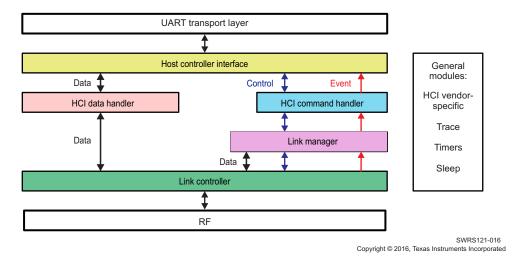


Figure 6-18. Bluetooth Transport Layers

6.8 Changes from the CC2564B Device to the CC2564C Device

The CC2564C device includes the following changes:

- Support added for standard HCI command for WBS to replace HCI VS command sequence
 Part of the Core Specification Addendum 2 (CSA2)
- Easy PCM interface integration when using both WBS (16 kHz) and NBS (8 kHz)
- PLC support added for NBS (8 kHz) when working at 16-kHz PCM clock
- Option added to start and stop the PCM clock as master on the PCM bus even when voice call is not active or set a timer to extend the clock after voice or audio is removed
- Link layer topology support—Acts concurrently as peripheral and central low-energy device
- AFH algorithm enhancements—Improvements to the automatic frequency hopping algorithms

7 Applications, Implementation, and Layout

NOTE

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 Reference Design Schematics and BOM for Power and Radio Connections

Figure 7-1 shows the reference schematics for the VQFN-MR package. For complete schematics and PCB layout guidelines, contact your TI representative.

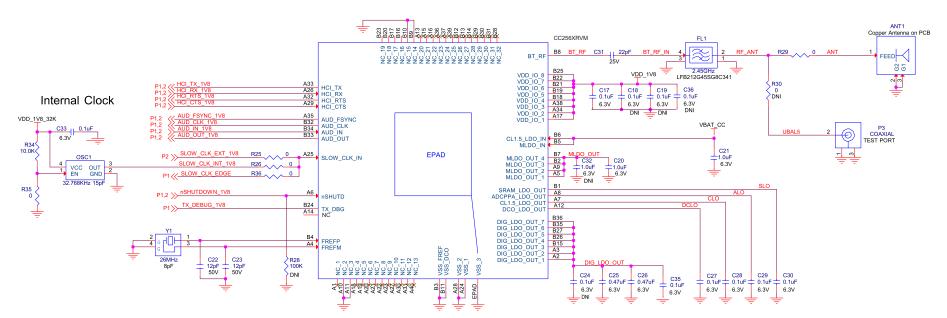


Figure 7-1. Reference Schematics

Texas

INSTRUMENTS

www.ti.com

 Table 7-1 lists the BOM for the VQFN-MR package.

QTY	REF. DES.	VALUE	DESCRIPTION	MANUFACTURER	MANUFACTURER PART NUMBER	ALT PART	NOTES
1	ANT1	NA	ANT_IIFA_CC2420_32mil_MIR	NA	IIFA_CC2420	Chip antenna	Copper antenna on PCB
6	Capacitor	0.1 µF	Capacitor, ceramic; 0.1-µF 6.3-V 10% X7R 0402	Kemet	C0402C104K9RACTU		
2	Capacitor	1.0 µF	Capacitor, ceramic; 1.0-µF 6.3-V 10% X5R 0402	Taiyo Yuden	JMK105BJ105KV-F		
2	Capacitor	12 pF	Capacitor, ceramic; 12 pF 6.3-V X5R 10% 0402	Murata Electronics	GRM1555C1H120JZ01D		
2	Capacitor	0.47 µF	Capacitor, ceramic; 0.47-µF 6.3-V X5R ±10% 0402	Taiyo Yuden	JMK105BJ474KV-F		
1	FL1	2.45 GHz	Filter, ceramic bandpass, 2.45-GHz SMD	Murata Electronics	LFB212G45SG8C341	DEA162450 BT_1260B3 (TDK)	Place brown marking up
1	OSC1	32.768 kHz 15 pF	Oscillator; 32.768-kHz 15-pF 1.5-V 3.3-V SMD	Abracon Corporation	ASH7K-32.768KHZ-T		Optional
1	U5	CC2564CRVM	CC2564C dual-mode Bluetooth controller	Texas Instruments	CC2564CRVM		
1	Y1	26 MHz	Crystal, 26 MHz	NDK	NX2016SA	TZ1325D (Tai-Saw TST)	
1	C31	22 pF	Capacitor, ceramic; 22-pF 25-V 5% NP0 0201	Murata Electronics North America	GRM0335C1E220JD01D (EXS00A-CS06025)		

Table 7-1. Bill of Materials

7.2 PCB Layout Guidelines

This section describes the PCB guidelines to speed up the PCB design using the CC256x VQFN device. Following these guidelines ensures that the design will pass Bluetooth SIG certification and also minimizes risk for regulatory certifications including FCC, ETSI, and CE. For more information, see *CC256x QFN PCB Guidelines*.

7.2.1 General PCB Guidelines

General PCB guidelines follow:

- You must verify the recommended PCB stackup in the PCB Design guidelines.
- You must verify the dimensions of the QFN PCB footprint in the QFN Package Information section of CC256x QFN PCB Guidelines and in Section 6.
- The decoupling capacitors must be as close as possible to the QFN device.

TEXAS INSTRUMENTS www.ti.com

7.2.2 Power Supply Guidelines

Guidelines for the power supply follow:

- The trace width must be at least 10 mils for the VBAT and VIO traces.
- The length of the traces must be as short as possible (pin to pin).
- Decoupling capacitors must be as close as possible to the QFN device:
 - The MLDO_IN capacitor must be close to pin B5.
 - The VDD_IO capacitor must be close to pins B18 and A17.

Guidelines for the LDOs follow:

- The trace width for the trace between x_LDO_x pins and decoupling capacitors is at least 5 mils; where possible, the recommended trace width is 10 mils.
- Place the decoupling capacitor of MLDO_OUT (C20) as close as possible to pin A5.
- These capacitors must close to the following pins:
 - The DIG_LDO_OUT capacitor must be close to ball B15.
 - The DIG_LDO_OUT capacitor must be close to ball B27.
 - The DIG_LDO_OUT capacitor must be close to ball B36.
- The DIG_LDO_OUT capacitor connected to ball B36 must be isolated from the top layer GND (see the *Low-Dropout Capacitors* section in CC256x QFN PCB Guidelines).
- The decoupling capacitors for SRAM, ADCPPA, and CL1.5 LDO_OUT must be as close as possible to their corresponding pins on the CC256x device.
- Place the device and capacitors together on the top side.
- The ground connection of each capacitor must be directly connected to solid ground layer (layer 2).
- The capacitor that is directly connected to pin A12 should be close to the device.
- Connect the DCO_LDO_OUT capacitor isolated from layer 1 ground directly to layer 2 solid ground.

Guidelines for the ground layer follow:

- Layer 2 must be a solid ground plane.
- Isolate VSS_FREF from ground on the top layer and route it directly to ground on the second layer (see the *Key VSS Ball* section in CC256x QFN PCB Guidelines).
- Isolate VSS_DCO (ball B11) from ground. Include VSS_DCO in the illustration of the DCO_LDO_OUT capacitor (see the DCO_LDO_OUT section in CC256x QFN PCB Guidelines).
- A minimum of 13 vias on the thermal pad are required to increase ground coupling.
- Connect VSS_FREF (ball B3) directly to solid ground, not to the thermal pad.

7.2.3 User Interfaces

Guidelines for the UART follow:

- The trace width for the UART must be at least 5 mils.
- Run the four UART lines as a bus interface.
- Determine if clocks, DC supply, or RF traces are not near these UART traces.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.

Guidelines for the PCM follow:

- The trace width for the PCM must be at least 5 mils.
- Run the four PCM lines as a bus interface and approximately the same length.
- Determine if clocks, DC supply, RF traces, and LDO capacitors are not near these PCM traces.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.
- Guidelines for TX_DBG follow:
- Check for an accessible test point on the board from TX_DBG pin B24.

7.2.4 Clock Interfaces

Guidelines for the slow clock follow:

- The trace width for the slow clock must be at least 5 mils.
- The signal lines for the slow clock must be as short as possible.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.

Guidelines for the fast clock follow:

- The trace width for the fast clock must be at least 5 mils.
- Ensure that crystal tuning capacitors are close to crystal pads.
- Make both traces (XTALM and XTALP) parallel as much as possible and approximately the same length.
- The ground plane on layer 2 is solid below these lines and there is ground around these traces on the top layer.

7.2.5 RF Interface

Guidelines for the RF Interface follow:

- TI recommends using an RF shield (not mandatory).
- Verify that RF traces are routed on the top layer and matched at 50 Ω with reference to ground.
- Route the RF line between these NC pins:
 - NC_2 (A10)
 - NC_3 (A11)
 - NC_14 (B9)
 - NC_15 (B10)

These NC pins are grounded for better RF isolation.

NOTE

These pins are NC at the chip level, but TI recommends grounding them on the PCB layout for better RF isolation.

- Ensure the area underneath the BPF pads is grounded on layer 1 and layer 2.
- Keep RF_IN and RF_OUT of the BPF pads clear of any ground fill (see the RF Trace section in CC256x QFN PCB Guidelines).
- Follow guidelines specified in the vendor-specific antenna design guides (including placement of antenna).
- Follow guidelines specified in the vendor-specific BPF design guides.
- Verify that the Bluetooth RF trace is a 50- Ω , impedance-controlled trace with reference to solid ground.
- Ensure that the RF trace length is as short as possible.

8 Device and Documentation Support

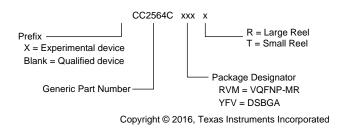
8.1 Third-Party Products Disclaimer

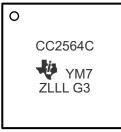
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

8.2 Tools and Software

Design Kits and Evaluation Modules

CC256x Bluetooth[®] Hardware Evaluation Tool This intuitive, user-friendly TI tool is used to evaluate TI's Bluetooth chips and can be downloaded as a complete package from the TI web site. More specifically, the tool is used to configure the properties of the Bluetooth chip through the Service Pack (SP) and also allows testing of RF performance.


For a complete listing of development-support tools, see the TI CC256x wiki. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.


8.3 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers. These prefixes represent evolutionary stages of product development from engineering prototypes through fully qualified production devices.

Device development evolutionary flow:

- **X** Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
- **P** Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.
- **null** Production version of the silicon die that is fully qualified.

Y = Last digit of the year

- M = Month in hex number, 1-C for Jan-Dec
- 7 = Primary site code for ANM
- Z = Secondary site code for ANM
- LLL = Assembly lot code
- O = Pin 1 indicator

Figure 8-1. CC2564C Device Nomenclature

Figure 8-2. Chip Markings (VQFN-MR Package)

8.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community The TI engineer-to-engineer (E2E) community was created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,

explore ideas and help solve problems with fellow engineers.

TI Embedded Processors Wiki Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

8.5 Trademarks

E2E is a trademark of Texas Instruments. ARM7TDMI is a registered trademark of ARM Limited. iPod is a registered trademark of Apple, Inc. Bluetooth is a registered trademark of Bluetooth SIG, Inc. All other trademarks are the property of their respective owners.

8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.7 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

18-Nov-2016

PACKAGING INFORMATION

Orderable Device		Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		QLY	(2)	(6)	(3)		(4/5)	
CC2564CRVMR	ACTIVE	VQFNP-MR	RVM	76	2500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	CC2564C	Samples
CC2564CRVMT	ACTIVE	VQFNP-MR	RVM	76	250	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	CC2564C	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

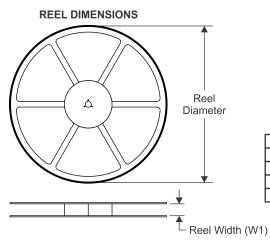
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

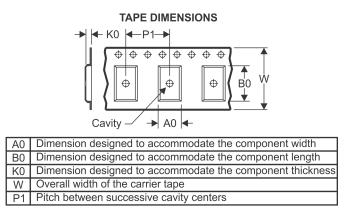
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

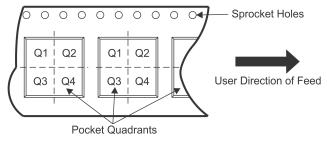
PACKAGE OPTION ADDENDUM

18-Nov-2016


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

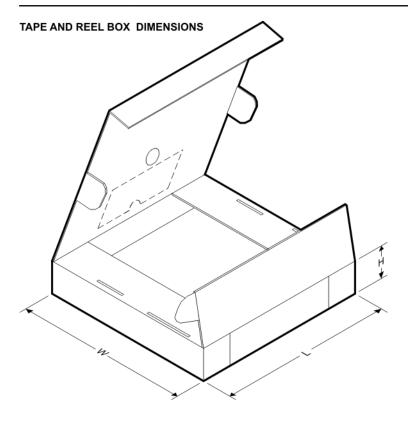

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

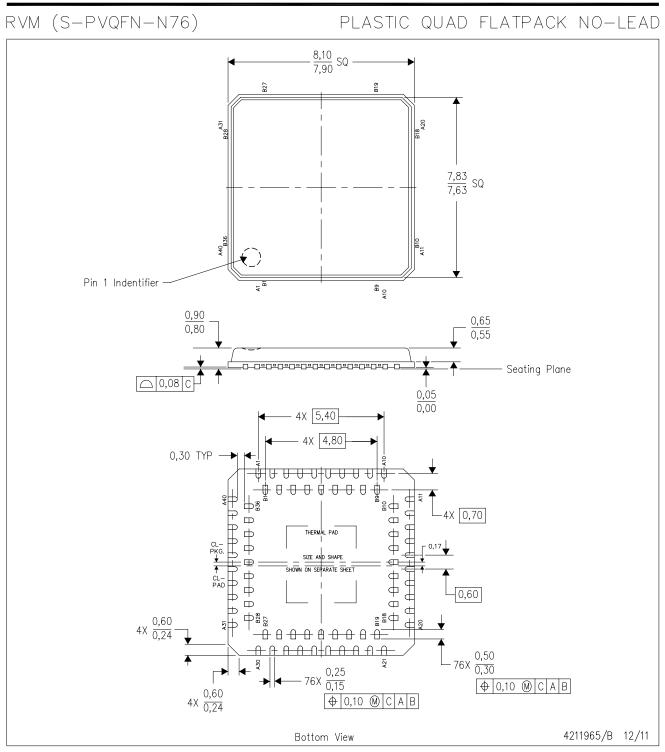
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CC2564CRVMT	VQFNP- MR	RVM	76	250	180.0	16.4	8.35	8.35	1.7	12.0	16.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


21-Nov-2016

*All dimensions are nominal

Device Package T		Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CC2564CRVMT	VQFNP-MR	RVM	76	250	213.0	191.0	55.0

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated