

Vishay Beyschlag

Ultra Precision Thin Film MELF Resistors

UMA 0204 and UMB 0207 ultra precision thin film MELF resistors combine the proven reliability of precision MELF products with the most advanced level of precision and stability first achieved with axial thin film precision resistors. This unique combination makes the product perfectly suited for all applications with outstanding requirements towards reliable precision and stability.

FEATURES

- Most advanced thin film technology
- Long term stability down to 0.02 %
- TCR down to ± 5 ppm/K
- High precision tolerance down to ± 0.02 %
- Operating voltage 350 V for UMB 0207
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Measuring and calibration equipment
- · Industrial process control systems
- Space and aircraft electronics
- Medical equipment

TECHNICAL SPECIFICATIONS			
DESCRIPTION	UMA 0204	UMB 0207	
DIN size	0204	0207	
Metric size code	RC3715M	RC6123M	
Resistance range	22 Ω to 332 k Ω	100 Ω to 390 kΩ	
Resistance tolerance	± 0.25 %; ± 0.1 %;	± 0.05 %; ± 0.02 %	
Temperature coefficient	± 15 ppm/K; ± 10 ppm/K; ± 5 ppm/K		
Rated dissipation, P ₇₀ ⁽¹⁾	0.25 W	0.4 W	
Operating voltage, U _{max.} AC _{RMS} /DC	200 V	350 V	
Permissible film temperature, $g_{\text{max.}}^{(1)}$	125 °C		
Operating temperature range (1)	-55 °C to 125 °C		
Permissible voltage against ambient (insulation):			
1 min; <i>U</i> _{ins}	300 V	500 V	
Failure rate: FIT _{observed}	≤ 0.1 x	10 ⁻⁹ /h	

Note

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

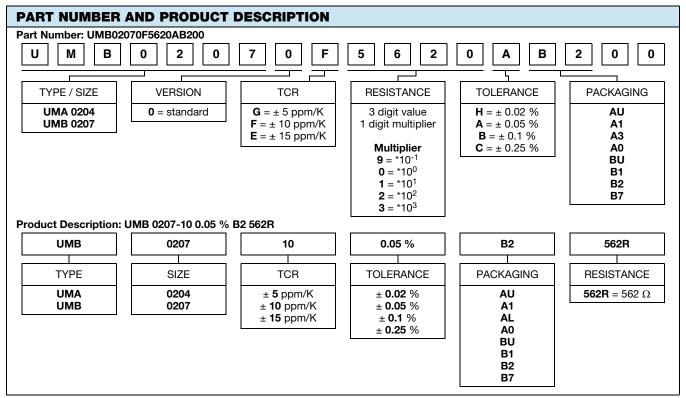
⁽¹⁾ Please refer to APPLICATION INFORMATION below

Vishay Beyschlag

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION							
OPERATION MODE		PRECISION	STANDARD				
Retad dissination D	UMA 0204	0.07 W	0.25 W				
Rated dissipation, P ₇₀	UMB 0207	0.11 W	0.4 W				
Operating temperature range		-55 °C to 85 °C	-55 °C to 125 °C				
Permissible film temperature, g_{F} ma	Permissible film temperature, 9F max.		125 °C				
	UMA 0204	22 Ω to 332 k Ω	22 Ω to 332 k Ω				
	UMB 0207	100 Ω to 390 k Ω	100 Ω to 390 k Ω				
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ after:	1000 h	≤ 0.02 %	≤ 0.05 %				
	8000 h	≤ 0.05 %	≤ 0.1 %				
	225 000 h	≤ 0.15 %	≤ 0.3 %				

TEMPERATURE C	TEMPERATURE COEFFICIENT AND RESISTANCE RANGE								
TYPE / SIZE	TCR	TOLERANCE	RESISTANCE	E-SERIES					
	± 15 ppm/K	± 0.05 %	47 Ω to 332 k Ω						
		± 0.25 %	22 Ω to 332 kΩ						
	± 10 ppm/K	± 0.1 %	43 Ω to 332 kΩ						
UMA 0204		± 0.05 %	75 Ω to 221 kΩ						
OWA 0204		± 0.25 %	33 Ω to 221 k Ω						
	± 5 ppm/K	± 0.1 %	56 Ω to 221 kΩ						
		± 0.05 %	75 Ω to 150 kΩ						
		± 0.02 %	75 Ω to 100 kΩ	E192					
	± 15 ppm/K	± 0.05 %	100 Ω to 390 kΩ	E192					
		± 0.25 %	100 Ω to 390 kΩ						
	± 10 ppm/K	± 0.1 %	100 Ω to 390 kΩ						
UMB 0207		± 0.05 %	100 Ω to 390 kΩ						
OMB 0207		± 0.25 %	270 Ω to 390 k Ω						
	. E nnm/V	± 0.1 %	270 Ω to 390 kΩ						
	± 5 ppm/K	± 0.05 %	270 Ω to 390 kΩ						
		± 0.02 %	270 Ω to 390 k Ω						

Notes


- TCR 10 ppm/K and TCR 05 ppm/K is specified over the temperature range from -10 °C to +85 °C
- UMA 0204: Approval to EN 140401-803, "Version A" is achieved for TCR 10 ppm/K with 0.25 % and 0.1 %

PACKAGING	PACKAGING							
TYPE / SIZE COD		QUANTITY	PACKAGING STYLE	WIDTH	PITCH	PACKAGING DIMENSIONS		
UMA 0204	AU	100				Вох		
	A1	1000	Antistatic blister tape acc.	8 mm	4 mm	Ø 180 mm/7"		
	A3 = AL	3000	IEC 60286-3, Type 2a	6 111111		Ø 160 Hilli/1		
	A0	10 000				Ø 330 mm/13"		
	BU	100			4 mm	Вох		
UMB 0207	B1	1000	Antistatic blister tape acc.	12 mm		Ø 180 mm/7"		
OMB 0207	B2	2000	IEC 60286-3, Type 2a	12 mm		2 100 11111/7		
	B7	7000				Ø 330 mm/13"		

Revision: 24-Feb-17 2 Document Number: 28715

Vishay Beyschlag

Note

• Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION

DESCRIPTION

Production is strictly controlled and follows an extensive set instructions established for reproducibility. A homogeneous film of special metal alloy is deposited on a high grade ceramic body (Al₂O₃) and conditioned to achieve the desired temperature coefficient. Nickel plated steel termination caps are firmly pressed on the metallized rods. A special laser is used to achieve the target value by smoothly cutting a helical groove in the resistive layer without damaging the ceramics. The resistor elements are covered by a unique protective coating designed for electrical, mechanical, and climatic protection. The terminations receive a final pure matte tin on nickel plating. Five color code rings designate the resistance value and tolerance in accordance with IEC 60062 (1).

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual resistors. This includes full screening for the elimination of products with a potential risk of early field failures. Only accepted products are laid directly into the blister tape in accordance with IEC 60286-3, Type 2a (1).

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in IEC 61760-1 (1). The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long term stability of the whole system.

The resistors are completely lead (Pb)-free, the pure matte tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes. Solderability is specified for 2 years after production or regualification, however, excellent solderability is proven after extended storage in excess of 10 years. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2)
- The Global Automotive Declarable Substance List (GADSL) (3)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

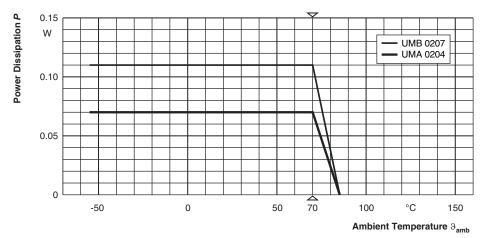
APPROVALS

Where applicable the resistors are approved within the IECQ-CECC Quality Assessment System for Electronic Components to the detail specification EN 140401-803 which refers to EN 60115-1, EN 60115-8 and the variety of environmental test procedures of the IEC 60068 (1) series.

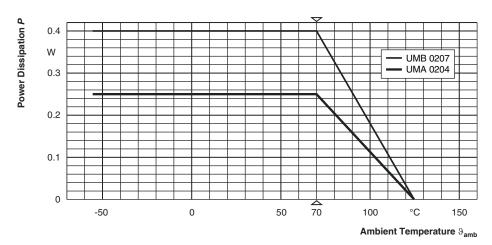
has achieved Beyschlag "Approval Manufacturer" in accordance with IECQ 03-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IECQ 03-3-1 is granted for the Vishay Beyschlag manufacturing process.

RELATED PRODUCTS

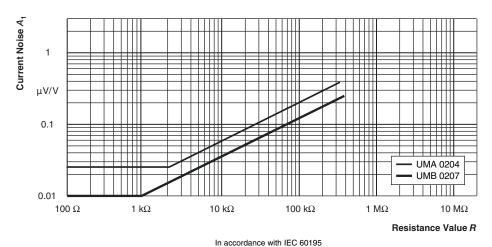
For products with a wider range of TCR, tolerance and resistance, see the datasheets:


- "Professional Thin Film MELF Resistors" (www.vishay.com/doc?28713)
- "Precision Thin Film MELF Resistors" (www.vishav.com/doc?28714)

Revision: 24-Feb-17


- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents
- (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474.
- (3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org

(4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table


FUNCTIONAL PERFORMANCE

Derating - Precision Operation Mode

Derating - Standard Operation Mode

Current Noise - A₁

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8 (successor of EN 140400), sectional specification

EN 140401-803, detail specification

IEC 60068-2-xx, test methods

The components are approved under the IECQ-CECC quality assessment system for electronic components according to table "Temperature Coefficient and Resistance Range".

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-803. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those

minimum requirements have been included.

The testing also covers most of the requirements specified by EIA/ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar) A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

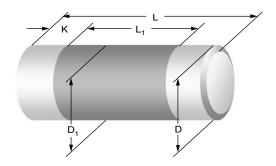
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (Δ <i>R</i>)			
			Stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER	
			UMA 0204	100 Ω to 100 k Ω	43 Ω to 221 kΩ	22 Ω to 332 k Ω	
			UMB 0207	270 Ω to 100 k Ω	100 Ω to 390 k Ω	-	
4.5	-	Resistance	-	± 0.25 % R;	± 0.1 % R; ± 0.05 % R	; ± 0.02 % R	
4.8		Temperature	At (20/-10/20) °C and (20/85/20) °C	d	± 10 ppm/K; ± 5 ppm/k	<	
4.0	-	coefficient	At (20/-55/20) °C and (20/125/20) °C		± 15 ppm/K		
		Endurance at 70 °C:	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off;				
		Precision operation mode - Endurance at 70 °C: Standard operation mode	70 °C; 1000 h	± (0.02 % R + 1 mΩ)			
4.25.1			70 °C; 8000 h	± (0.05 % R + 1 mΩ)			
4.25.1	-		$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off;				
			70 °C; 1000 h		\pm (0.05 % R + 1 m Ω)		
		operation mode	70 °C; 8000 h	± (0.1 % R + 1 mΩ)			
		Endurance at	85 °C; 1000 h	± (0.01 % R + 1 mΩ)	\pm (0.05 % R + 1 m Ω)	± (0.1 % R + 1 mΩ)	
4.25.3	=	upper category temperature	125 °C; 1000 h	± (0.05 % R + 1 mΩ)	± (0.1 % R + 1 mΩ)	± (0.15 % R + 1 mΩ	
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (0.03 % R + 1 mΩ)	± (0.05 % R + 1 mΩ)	± (0.1 % R + 1 mΩ)	
4.37	67 (Cy)	Damp heat, steady state, accelerated	(85 ± 2) °C; (85 ± 5) % RH; $U = 0.3 \times \sqrt{P_{70} \times R}$ $\leq 100 \text{ V and}$ $U = 0.3 \times U_{\text{max.}}$; (the smaller value is valid) 1000 h	± (0.1 % R + 1 mΩ)	± (0.25 % R + 1 mΩ)		

Revision: 24-Feb-17 6 Document Number: 28715

Vishay Beyschlag

TEST	PROCEDU	JRES AND RE	QUIREMENTS				
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (△R)			
			Stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER	
			UMA 0204	100 Ω to 100 k Ω	43 Ω to 221 kΩ	22 Ω to 332 k Ω	
			UMB 0207	270 Ω to 100 k Ω	100 Ω to 390 k Ω	-	
4.23		Climatic sequence:					
4.23.2	2 (Bb)	Dry heat	UCT; 16 h				
4.23.3	30 (Db)	Damp heat, cyclic	55 °C; 24 h; ≥ 90 % RH; 1 cycle				
4.23.4	1 (Ab)	Cold	LCT; 2 h				
4.23.5	13 (M)	Low air pressure	8.5 kPa; 2 h; (25 ± 10) °C				
4.23.6	30 (Db)	Damp heat, cyclic	55 °C; 24 h; ≥ 90 % RH; 5 cycles				
4.23.7	-	DC load	$U = \sqrt{P_{70} \times R} \le U_{\text{max.}};$ 1 min.				
			LCT = -10 °C; UCT = 85 °C	± (0.03 % R + 1 mΩ)	$\pm (0.05 \% R + 1 \text{ m}\Omega)$	-	
			LCT = -55 °C; UCT = 125 °C	-	-	\pm (0.1 % R + 1 m Ω)	
-	1 (Aa)	Cold	-55 °C; 2 h		± (0.02 % R + 0.1 mΩ)		
			30 min at LCT; 30 min at UCT; LCT = -10 °C; UCT = 85 °C				
		Danid abanga	5 cycles	± (0.01 % R + 1 mΩ)	± (0.02 % R + 1 mΩ)	-	
4.19	14 (Na)	Rapid change of temperature	1000 cycles	± (0.05 % R + 1 mΩ)	± (0.05 % R + 1 mΩ)	-	
		·	LCT = -55 °C; UCT = 125 °C				
			5 cycles	-	-	± (0.025 % R + 1 mΩ)	
			1000 cycles	-	-	\pm (0.1 % R + 1 m Ω)	
4.10		Short time overload; Precision operation mode	$U = 2.5 \times \sqrt{P_{70} \times R} \text{ or } U = 2 \times U_{\text{max.}};$	± (0.005 % R + 1 mΩ)	± (0.01 %	R + 1 mΩ)	
4.13	-	Short time overload; Standard operation mode	whichever is the less severe; 5 s	± (0.01 % R + 1 mΩ)			
4.27	-	Single pulse high voltage overload; Standard operation mode	Severity no. 4: $U = 10 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; whichever is the less severe; 10 pulses 10 μ s/700 μ s		± (0.25 % R + 5 mΩ)		
4.39	-	Periodic electric overload; Standard operation mode	$U = \sqrt{15 \times P_{70} \times R} \text{ or }$ $U = 2 \times U_{\text{max}};$ whichever is the less severe; $0.1 \text{ s on; } 2.5 \text{ s off;}$ 1000 cycles	± (0.5 % R + 5 mΩ)			

Vishay Beyschlag

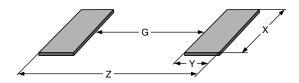

TEST	TEST PROCEDURES AND REQUIREMENTS									
EN 60115-1 CLAUSE	IEC 60068-2 ⁽¹⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (Δ <i>R</i>)						
			Stability for product types:	STABILITY CLASS 0.05 OR BETTER	STABILITY CLASS 0.1 OR BETTER	STABILITY CLASS 0.25 OR BETTER				
			UMA 0204	100 Ω to 100 k Ω	43 Ω to 221 k Ω	22 Ω to 332 k Ω				
			UMB 0207	270 Ω to 100 k Ω	100 Ω to 390 k Ω	-				
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 7.5 h	± (0.01 % R + 1 mΩ)						
4.38	-	Electrostatic discharge (Human Body Model)	IEC 61340-3-1 ⁽¹⁾ ; 3 pos. + 3 neg. discharges UMA 0204: 2 kV UMB 0207: 4 kV	± (0.5 % <i>R</i> + 50 mΩ)						
			Solder bath method; SnPb40; non-activated flux; (215 ± 3) °C; (3 ± 0.3) s	Good tinning (≥ 95 % covered); no visible damage						
4.17	58 (Td)	Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s	Good tinning (≥ 95 % covered); no visible damage						
		Posistanas ta	Solder bath method; (260 ± 5) °C; (2 ± 0.2) s	(2	2)	± (0.05 % R + 10 mΩ)				
4.18	58 (Td)	Resistance to soldering heat	Reflow method 2 (IR/forced gas convection); (260 ± 5) °C; (10 ± 1) s	± (0.01 % R + 1 mΩ)	± (0.02 %	<i>R</i> + 1 mΩ)				
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol; 50 °C; method 2		No visible damage					
4.30	45 (XA)	Solvent resistance of marking	Isopropyl alcohol; 50 °C; method 1, toothbrush	Marking legible; no visible damage						
4.32	21 (Ue ₃)	Shear (adhesion)	45 N	No visible damage						
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	No visible damage, no open circuit in bent position $\pm (0.02 \% R + 10 \text{ m}\Omega)$ $\pm (0.05 \% R + 10 \text{ m}\Omega)$						
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins}$; 60 s	No flashover or breakdown						
4.35	-	Flammability	IEC 60695-11-5 ⁽¹⁾ , needle flame test; 10 s		No burning after 30 s					

Notes

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

⁽²⁾ Wave soldering is not recommended

DIMENSIONS



DIMENSIONS AND MASS								
TYPE / SIZE L (mm) D (mm) L _{1 min.} (mm) D ₁ (mm) K (mm) MAX (mm)								
UMA 0204	3.6 + 0/- 0.2	1.4 + 0/- 0.1	1.8	D + 0/- 0.15	0.75 ± 0.1	22		
UMB 0207	5.8 + 0/- 0.15	2.2 + 0/- 0.2	3.2	D + 0/- 0.2	1.1 ± 0.1	80		

Note

Color code marking is applied according to IEC 60062 in five bands. Each color band appears as a single solid line, voids are permissible if at least ²/₃ of the band is visible from each radial angle of view. The last color band for tolerance is approximately 50 % wider than the other bands. An interrupted band between the 4th and 5th full band indicates the temperature coefficient (orange = TCR 15 ppm/K, blue = TCR 10 ppm/K, violet = TCR 05 ppm/K)

PATTERN STYLES FOR MELF RESISTORS

RECOMMENDED SOLDER PAD DIMENSIONS								
	WAVE SOLDERING (1) REFLOW SOLDERING							
TYPE / SIZE	G (mm)	Y (mm)	X (mm)	Z (mm)	G (mm)	Y (mm)	X (mm)	Z (mm)
UMA 0204	1.5	1.5	1.8	4.5	1.7	1.2	1.6	4.1
UMB 0207	2.8	2.1	2.6	7.0	3.2	1.7	2.4	6.6

Notes

- The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x ⁽¹⁾, or in publication IPC-7351
- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED