

Optocoupler, Phototransistor Output, SOP-4L, Long Mini-Flat Package

DESCRIPTION

The TCLT100. series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead SOP4L package.

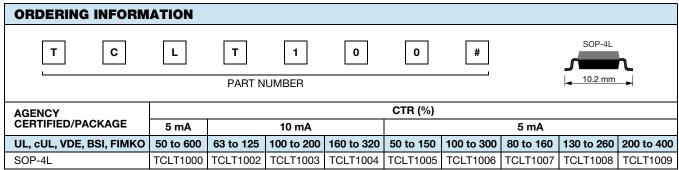
APPLICATIONS

- Switchmode power supplies
- Computer peripheral interface
- Microprocessor system interface

FEATURES

- SMD low profile 4 lead package
- V_{IORM} = 1050 V
- CTR flexibility available see order information
- Special construction
- · Extra low coupling capacitance
- DC input with transistor output
- Creepage distance > 8 mm
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

ROHS COMPLIANT HALOGEN FREE


FREE GREEN (5-2008)

AGENCY APPROVALS

- UL1577, file no. E76222
- CSA (cUL) 22.2 bulletin 5A recognized file no. E-76222
- BSI: BS EN 41003, BS EN 60065 (BS 415), BS EN 60950 (BS 7002), certificate number 7081 and 7402
- DIN EN 60747-5-5 (VDE 0884)
- FIMKO: EN 60950
- CQC

Note

• See the safety standard approval list "Agency Table" for more detailed information.

Note

Available only on tape and reel.

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	CONDITION	SYMBOL	VALUE	UNIT		
INPUT						
Reverse voltage		V _R	6	V		
Forward current		I _F	60	mA		
Forward surge current	t _p ≤ 10 μs	I _{FSM}	1.5	Α		
Power dissipation		P _{diss}	100	mW		
Junction temperature		T _j	125	°C		
OUTPUT						
Collector emitter voltage		V_{CEO}	70	V		
Emitter collector voltage		V _{ECO}	7	V		
Collector current		I _C	50	mA		
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA		
Power dissipation		P _{diss}	150	mW		
Junction temperature		Tj	125	°C		
COUPLER						
Total power dissipation		P _{tot}	250	mW		
Operating ambient temperature range		T _{amb}	-55 to +100	°C		
Storage temperature range		T _{stg}	-55 to +125	°C		
Soldering temperature		T _{sld}	260	°C		

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward voltage	$I_F = 50 \text{ mA}$	V _F	-	1.25	1.6	V		
Junction capacitance	$V_R = 0 V, f = 1 MHz$	C _j	-	50	-	pF		
OUTPUT	OUTPUT							
Collector emitter voltage	$I_C = 1 \text{ mA}$	V_{CEO}	70	-	-	V		
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7	-	-	V		
Collector emitter cut-off current	$V_{CE} = 20 \text{ V}, I_F = 0 \text{ A}$	I _{CEO}	-	10	100	nA		
COUPLER								
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}	-	-	0.3	V		
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c	-	110	-	kHz		
Coupling capacitance	f = 1 MHz	C _k	-	0.3	-	pF		

Note

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	$V_{CE} = 5 \text{ V}, I_F = 5 \text{ mA}$	TCLT1000	CTR	50	ı	600	%
	V _{CE} = 5 V, I _F = 10 mA	TCLT1002	CTR	63	-	125	%
		TCLT1003	CTR	100	-	200	%
I _C /I _F		TCLT1004	CTR	160	-	320	%
	V _{CE} = 5 V, I _F = 1 mA	TCLT1002	CTR	22	45	-	%
		TCLT1003	CTR	34	70	-	%
		TCLT1004	CTR	56	100	-	%
	V _{CE} = 5 V, I _F = 5 mA	TCLT1005	CTR	50	-	150	%
		TCLT1006	CTR	100	-	300	%
		TCLT1007	CTR	80	-	160	%
		TCLT1008	CTR	130	-	260	%
		TCLT1009	CTR	200	ı	400	%

SAFETY AND INSULATION RATINGS						
PARAMETER	CONDITION	SYMBOL	VALUE	UNIT		
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	2	kV		
Partial discharge test voltage -	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$	V _{IOTM}	8	kV _{peak}		
lot test (sample test)	(see figure 2)	V_{pd}	1.68	kV _{peak}		
Isolation test voltage (RMS)		V _{ISO}	5000	V_{RMS}		
Insulation resistance	V _{IO} = 500 V	R _{IO}	10 ¹²	Ω		
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	10 ¹¹	Ω		
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹	Ω		
Forward current		I _{si}	130	mA		
Power dissipation		P _{so}	265	mW		
Rated impulse voltage		V _{IOTM}	8	kV		
Safety temperature		T _{si}	150	°C		
Comparative tracking index		CTI	175			
Clearance distance			8.0	mm		
Creepage distance			8.0	mm		
Insulation distance (internal)			0.40	mm		

Note

 According to DIN EN 60747-5-2 (VDE 0884) (see figure 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

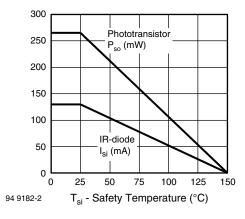


Fig. 1 - Derating Diagram

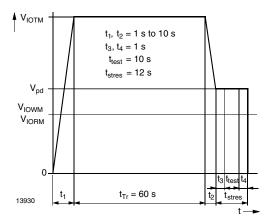


Fig. 2 - Test Pulse Diagram for Sample Test according to DIN EN 60747-5-2 (VDE 0884); IEC60747-5-5

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Delay time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _d	-	3	-	μs	
Rise time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _r	-	3	-	μs	
Fall time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _f	-	4.7	-	μs	
Storage time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _s	-	0.3	-	μs	
Turn-on time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _{on}	-	6	-	μs	
Turn-off time	V_S = 5 V, I_C = 2 mA, R_L = 100 Ω , (see figure 3)	t _{off}	-	5	-	μs	
Turn-on time	V_S = 5 V, I_F = 10 mA, R_L = 1 k Ω , (see figure 4)	t _{on}	-	9	-	μs	
Turn-off time	V_S = 5 V, I_F = 10 mA, R_L = 1 k Ω , (see figure 4)	t _{off}	-	10	-	μs	

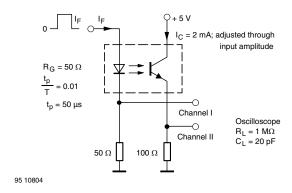


Fig. 3 - Test Circuit, Non-Saturated Operation

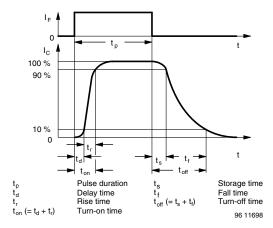


Fig. 5 - Switching Times

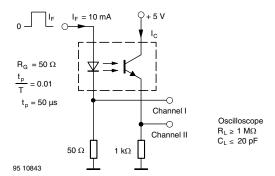


Fig. 4 - Test Circuit, Saturated Operation

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

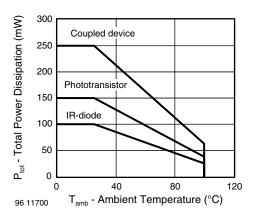


Fig. 6 - Total Power Dissipation vs. Ambient Temperature

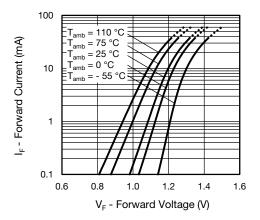


Fig. 7 - Forward Current vs. Forward Voltage

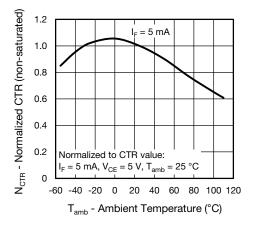


Fig. 8 - Normalized Current Transfer Ratio (non-saturated) vs.
Ambient Temperature

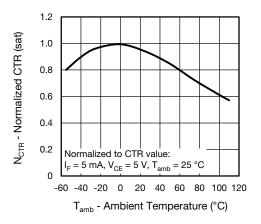


Fig. 9 - Normalized Current Transfer Ratio (saturated) vs.

Ambient Temperature

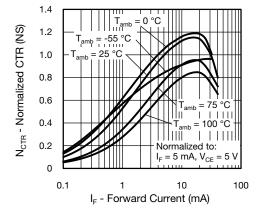


Fig. 10 - Normalized Current Transfer Ratio (non-saturated) vs. Forward Current

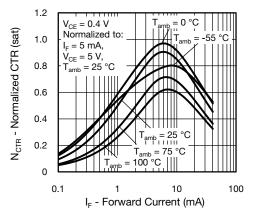
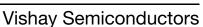



Fig. 11 - Normalized Current Transfer Ratio (saturated) vs. Forward Current

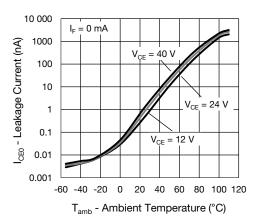


Fig. 12 - Collector Dark Current vs. Ambient Temperature

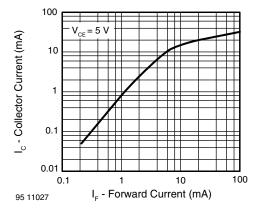


Fig. 13 - Collector Current vs. Forward Current

Fig. 14 - Collector Current vs. Collector Emitter Voltage

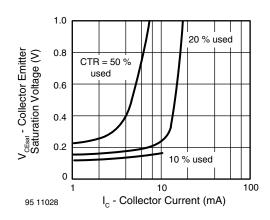


Fig. 15 - Collector Emitter Saturation Voltage vs. Collector Current

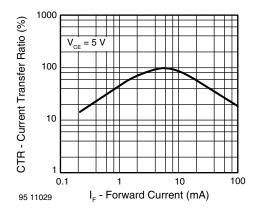


Fig. 16 - Current Transfer Ratio vs. Forward Current

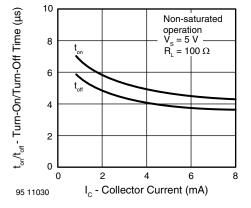


Fig. 17 - Turn-on/off Time vs. Collector Current

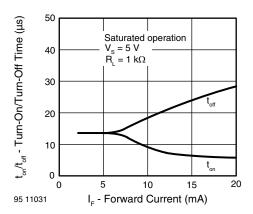
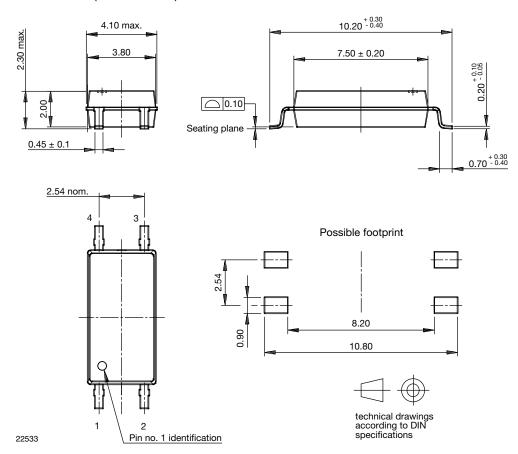
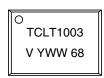




Fig. 18 - Turn-on/off Time vs. Forward Current

PACKAGE DIMENSIONS (in millimeters)

PACKAGE MARKING (example)

TAPE AND REEL DIMENSIONS (in millimeters)

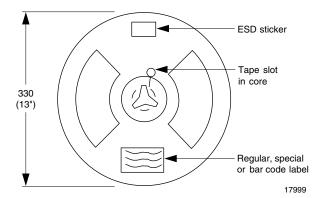


Fig. 19 - Reel Dimensions (3000 units per reel)

Direction of pulling out technical drawings according to Diring to Diring to Diring to Diring points are provided to Diring to Diring points according to Diring points according to Diring according to Diring points according to Diring points according to Diring points according to Diring points according to Diring according to Diring points a

Fig. 20 - Tape Dimensions

SOLDER PROFILE

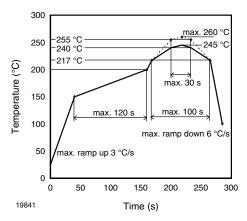


Fig. 21 - Lead (Pb)-free Reflow Solder Profile according to J-STD-020

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: $T_{amb} < 30$ °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.