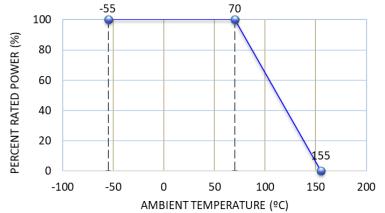
Automotive Grade Anti-sulfur Thin Film Chip Resistor

Resistive Product Solutions

Features:

- Tolerance to ± 0.05%
- Low TCR to ± 10 ppm/°C
- Inner terminations engineered to deter sulfur contamination
- RoHS compliant, REACH compliant, lead free, and halogen free
- AEC-Q200 qualified

	Electrical Specifications									
Type/Code	Power Rating (W)	Maximum Working	Maximum Overload Voltage (V)	TCR	3 ()					
	@ 70°C Voltage	Voltage (V) (1)		(ppm/⁰C)	±0.05%	±0.1%	±0.25%	±0.5%	±1%	
RNCA0402	0.063	50	100	± 10 ± 15	49.9 - 12K	10 - 68.1K				
RNCA0402	0.005	50	100	± 25 ± 50	49.9 - 12K	4.7 - 221K				
RNCA0603	0.1	75	150	± 10 ± 15	· 49.9 - 30.1K	10 - 332K				
KNCA0003	0.1	75	150	± 25 ± 50	49.9 - 30. IK	4.7 - 681K				
RNCA0805	0.125	150	300	± 10 ± 15	49.9 - 49.9K	10 - 681K				
KNCA0605	0.125 150	150	300	± 25 ± 50		4.7	- 1M			
RNCA1206	0.25	200	400	± 10 ± 15	40.0 100K		10 -	- 1M		
KINGA 1200	0.25 200	400	± 25 ± 50	— 49.9 - 100K		4.7 -	1.5M			


(1) Lesser of $\sqrt{(P^*R)}$ or maximum working voltage.

Mechanical Specifications									
Type/Code	L Body Length	W Body Width	H Body Height	I ₁ Top Termination	I ₂ Bottom Termination	Unit			
RNCA0402	0.039 ± 0.004	0.020 ± 0.002	0.012 ± 0.002	0.008 ± 0.004	0.008 ± 0.004	inches			
	1.00 ± 0.10	0.50 ± 0.05	0.30 ± 0.05	0.20 ± 0.10	0.20 ± 0.10	mm			
RNCA0603	0.063 ± 0.006	0.031 ± 0.004	0.018 ± 0.004	0.012 ± 0.008	0.012 ± 0.008	inches			
	1.60 ± 0.15	0.80 ± 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	mm			
RNCA0805	0.079 ± 0.006	0.049 ± 0.006	0.022 ± 0.004	0.014 ± 0.008	0.016 ± 0.008	inches			
	2.00 ± 0.15	1.25 ± 0.15	0.55 ± 0.10	0.35 ± 0.20	0.40 ± 0.20	mm			
RNCA1206	0.120 ± 0.006	0.063 ± 0.006	0.022 ± 0.004	0.018 ± 0.008	0.020 ± 0.008	inches			
	3.05 ± 0.15	1.60 ± 0.15	0.55 ± 0.10	0.45 ± 0.20	0.50 ± 0.20	mm			

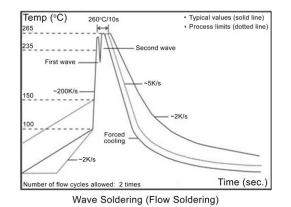
Automotive Grade Anti-sulfur Thin Film Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

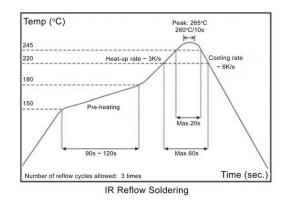
Power Derating Curve:

Performance Characteristics							
Test	Test Method	Test Specifications	Test Condition				
Temperature Coefficient of Resistance (TCR)	JIS-C-5201-1 4.8 IEC-60115-1 4.8	Refer to Electrical Specification table	At 25 / -55°C and 25°C / +125°C, 25°C is the reference temperature				
Short Time Overload	JIS-C-5201-1 4.13 IEC-60115-1 4.13	± (0.1% + 0.05Ω)	2.5 times RCWV or max. overload voltage whichever is less for 5 seconds				
Leaching	JIS-C-5201-1 4.18 IEC-60068-2-58 8.2.1	>95% coverage No visual damage	260 ± 5°C for 30 seconds				
Resistance to Soldering Heat	JIS-C-5201-1 4.18 IEC-60115-1 4.18	± (0.1% + 0.05Ω) No visual damage	260 ± 5°C for 10 seconds				
Insulation Resistance	JIS-C-5201-1 4.6 IEC-60115-1 4.6	≥ 10 GΩ	Apply 100VDC for 1 minute				
Temperature Cycling	JESD22 Method JA-104	± (0.3% + 0.05Ω) No visual damage	1000 cycles (-55°C to +125°C). Measurement at 24 ± 4 hours after test conclusion. 30 minutes maximum dwell time at each temperature extreme.				
Resistance to Solvent	MIL-STD-202 Method 215	± (0.1% + 0.05Ω) No visual damage	Add aqueous wash chemical - OKEM clean or equivalent				
Biased Humidity	MIL-STD-202 Method 103	± (0.3% + 0.05Ω)	1000 hours; 85°C / 85% RH, 10% of operating power. Measurement at 24 ± 4 hours after test conclusion.				
High Temperature Exposure (Storage)	MIL-STD-202 Method 108	± (0.3% + 0.05Ω)	1000 hours at T=155°C. Unpowered. Measurement at 24 ± 4 hours after test conclusion.				
Operation Life	MIL-STD-202 Method 108	± (0.3% + 0.05Ω)	Condition D Steady State TA = 125° C at derated power. Measurement at 24 ± 4 hours after test conclusion.				
External Visual	MIL-STD-883 Method 2009	No visual damage	Electrical test not required Inspect device construction, marking and workmanship.				
Mechanical Shock	MIL-STD-202 Method 213	± (0.1% + 0.05Ω)	Test 1/2 sine pulse, peak value: 100 g, normal duration: 6 ms. Velocity change: 12.3 ft/sec. 10 shocks in each direction, total of 30 shocks				

Automotive Grade Anti-sulfur Thin Film Chip Resistor

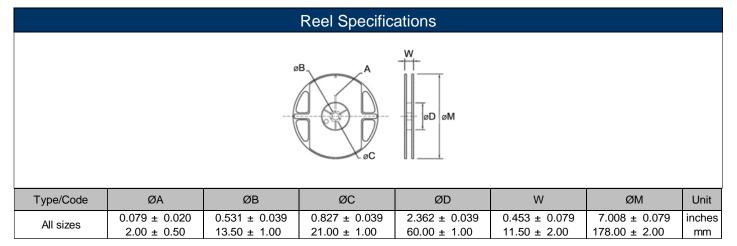

Stackpole Electronics, Inc. Resistive Product Solutions

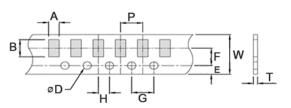
Performance Characteristics (cont.)								
Test	Test Method	Test Specifications	Test Condition					
Vibration	MIL-STD-202 Method 204	± (0.1% + 0.05Ω)	5 g's for 20 minutes, 12 cycles each of 3 orientations. Note: test from 10 - 2000 H					
ESD	AEC-Q200-002 or ISO/DIS 10605	± (0.5% + 0.05Ω)	Human body model 0402: 400V, 0603: 1000V 0805: 1500V , 1206: 2000V					
Solderability	J-STD-002	>95% Coverage No visual damage	(1) 4 hours 155°C dry heat (2) 245 ± 5°C 3 seconds					
Terminal Strength (SMD)	AEC Q200-006	No breakage	Pressurizing force for 60 seconds 0402 / 0603: 8N 0805 / 1206: 17.7N					
Board Flex	AEC Q200-005	± (0.1% + 0.05Ω)	Bending once for 60 seconds. 3mm					
Sulfur Test (FoS)	ASTM B809-95 ANSI/EIA-977	± (1% + 0.05Ω)	$105 \pm 2^{\circ}$ C, no power rating for 1000 hours					


Operating temperature range is -55°C to +155°C

Soldering Condition

Wave solder temperature condition:

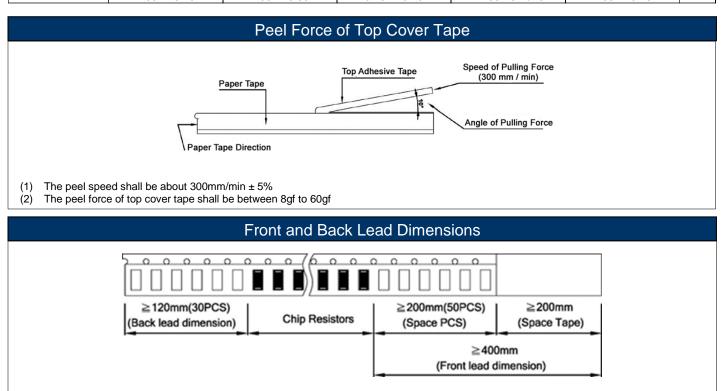

Solder reflow temperature condition:


- Rework temperature (hot air equipment): 350°C, 3 ~ 5 seconds
- Recommended reflow methods:
 - IR, vapor phase oven, hot air oven. If reflow temperatures exceed the recommended profile, devices may not meet 0 the performance requirements.

Automotive Grade Anti-sulfur Thin Film Chip Resistor

Recommended Land Pattern										
Type/Code A B C Unit										
RNCA0402	0.020 0.50	0.063 1.60	0.028 0.70	inches mm						
RNCA0603	0.031 0.80	0.094 2.40	0.039 1.00	inches mm						
		0.111	0.055	inche						
RNCA0805	0.051 1.30	0.114 2.90	1.40	mm						

Paper Tape Specifications



Type/Code	А	В	W	E	F	Unit
RNCA0402	0.028 ± 0.004	0.047 ± 0.004	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
	0.70 ± 0.10	1.20 ± 0.10	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
RNCA0603	0.041 ± 0.008	0.071 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
RINCAUDUS	1.05 ± 0.20	1.80 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
RNCA0805	0.061 ± 0.008	0.091 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
KINCAU605	1.55 ± 0.20	2.30 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm
RNCA1206	0.075 ± 0.008	0.138 ± 0.008	0.315 ± 0.008	0.069 ± 0.004	0.138 ± 0.002	inches
RINGAT200	1.90 ± 0.20	3.50 ± 0.20	8.00 ± 0.20	1.75 ± 0.10	3.50 ± 0.05	mm

Automotive Grade Anti-sulfur Thin Film Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

	Paper Tape Specifications (cont.)								
Type/Code	G	Н	Т	ØD	Р	Unit			
RNCA0402	0.157 ± 0.004	0.079 ± 0.002	0.018 ± 0.004	0.059 +0.004 / -0	0.079 ± 0.004	inches			
	4.00 ± 0.10	2.00 ± 0.05	0.45 ± 0.10	1.50 +0.1 / -0	2.00 ± 0.10	mm			
RNCA0603	0.157 ± 0.004	0.079 ± 0.002	0.024 ± 0.004	0.059 +0.004 / -0	0.157 ± 0.004	inches			
	4.00 ± 0.10	2.00 ± 0.05	0.60 ± 0.10	1.50 +0.1 / -0	4.00 ± 0.10	mm			
DNCAOOOF	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.059 +0.004 / -0	0.157 ± 0.004	inches			
RNCA0805	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	1.50 +0.1 / -0	4.00 ± 0.10	mm			
	0.157 ± 0.004	0.079 ± 0.002	0.030 ± 0.004	0.059 +0.004 / -0	0.157 ± 0.004	inches			
RNCA1206	4.00 ± 0.10	2.00 ± 0.05	0.75 ± 0.10	1.50 +0.1 / -0	4.00 ± 0.10	mm			

Automotive Grade Anti-sulfur Thin Film Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solutions

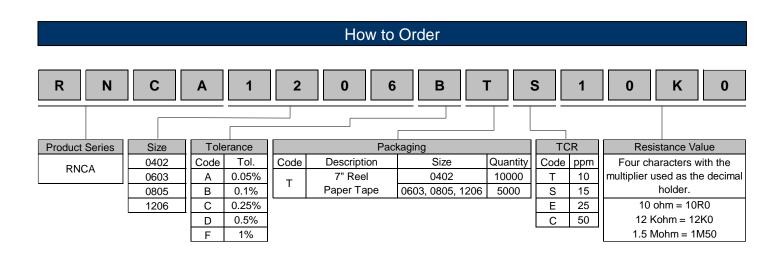
Part Marking E96 and E24 Values 0805 and 1206 The nominal resistance is marked on the surface of the overcoating with the use of 1211 4R70 four character markings. Values below 100Ω will use "R" as the decimal holder. E96 Values for 0603 A two character number is assigned to each standard R-Value (E96) as shown in the chart below. 03X This is followed by one alpha character which is used as a multiplier. Each letter from "Y" - "F" represents a specific multiplier. Alpha Character = Multiplier Chip Marking Value Y = 0.1 C = 1000 01B = $10.0 \times 100 = 1 \text{ K}\Omega$ X = 1 D = 10000 25C = 17.8 x 1000 = 17.8 KΩ E = 10000093D = 90.9 x10000 = 909 KΩ A = 10 B = 100 F = 1000000 E96 # **R-Value R-Value R-Value** R-Value # **R-Value** # **R-Value** # # # 01 17 33 49 65 81 10.0 14.7 21.5 31.6 46.4 68.1 02 10.2 18 15.0 34 22.1 50 32.4 66 47.5 82 69.8 03 10.5 19 15.4 35 22.6 51 33.2 67 48.7 83 71.5 04 20 68 10.7 15.8 36 23.2 52 34.0 49.9 84 73.2 05 21 37 53 69 85 11.0 16.2 23.7 34.8 51.1 75.0 22 70 06 11.3 16.5 38 24.3 54 35.7 52.3 86 76.8 07 23 39 55 71 87 11.5 16.9 24.9 36.5 53.6 78.7 08 24 17.4 40 37.4 72 54.9 88 80.6 11.8 25.5 56 09 12.1 25 17.8 41 26.1 57 38.3 73 56.2 89 82.5 10 42 74 90 12.4 26 18.2 26.7 58 39.2 57.6 84.5 11 12.7 27 18.7 43 27.4 59 40.2 75 59.0 91 86.6 76 92 12 13.0 28 44 28.0 60 41.2 60.4 88.7 19.1 13 29 45 61 77 93 13.3 19.6 28.7 42.2 61.9 90.9 14 30 46 62 78 94 13.7 20.0 29.4 43.2 63.4 93.1 15 31 47 63 79 95 14.0 20.5 30.1 44.2 64.9 95.3 16 32 48 64 80 96 14.3 21.0 30.9 45.3 66.5 97.6 Note: 0402 resistors are not marked. E192 values that are not shared E96 or E24 values are not marked.

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

	RoHS Compliance Status								
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)			
RNCA	Automotive Grade Anti-sulfur and AEC Compliant Thin Film Chip Resistor	SMD	YES	100% Matte Sn over Ni	Always	Always			

"Conflict Metals" Commitment


We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

