Full-Brick AC-DC Converter

90 - 290 V AC Input

48 V DC Output

10.5 A Current

**Negative logic** 

### **Description**

The ADF10S48B is a new generation isolated AC-DC converter that uses an industry standard full-brick structure, featuring high efficiency and power density with low output ripple and noise. It operates from an input voltage range of 90 V AC to 290 V AC, and provides the rated output voltage of 48 V DC as well as the maximum output current of 10.5 A.

## **Operational Features**

- Rated input voltage: 110/220 V AC
- Output current: 0 10.5 A
- Efficiency: 92.8% (48 V DC, 10.5 A)

#### **Mechanical Features**

- Industry standard full-brick (L x W x H): 116.8 mm x 61.0 mm x 12.7 mm (4.60 in. x 2.40 in. x 0.50 in.)
- Weight: 190 g

#### **Control Features**

- Remote on/off
- Remote sense
- Output voltage Trim
- PMBus communication

#### **Protection Features**

- Input undervoltage protection
- Input overvoltage protection
- Output overcurrent protection (Self-recovery)
- Output overvoltage protection (Latch off)
- Output short circuit protection (Self-recovery)
- Overtemperature protection (Self-recovery)





#### **ADF10S48B**

### **Safety Features**

- TUV, UL, CE certification
- Meet UL60950-1, C22.2 NO. 60950-1, EN 60950-1 and IEC 60950-1
- Meet RoHS6 requirement

## **Applications**

- Servers/Storages
- Routers/Switches
- Telecommunications equipment
- Enterprise networks

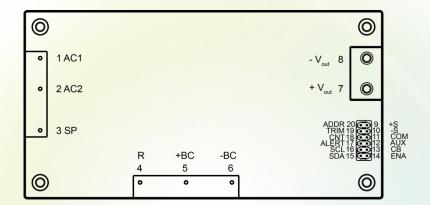


## **Designation Explanation**

ADF 10 S 48 B 1 2 3 4 5

1 — AC input, digital control, full-brick

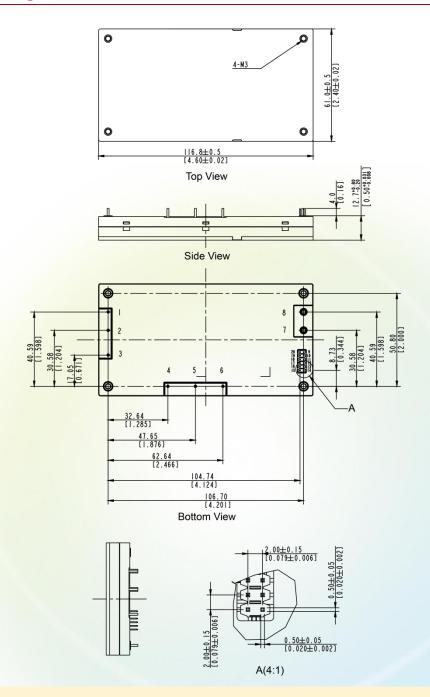
2 — Output current: 10.5 A


3 — Single output

4 — Output voltage: 48 V

5 — With a baseplate

## **Mechanical Diagram**


#### **Pin Description**



| Pin No. | Name              | Function                                        | Pin No. | Name  | Function                                    |
|---------|-------------------|-------------------------------------------------|---------|-------|---------------------------------------------|
| 1       | AC1               | AC input                                        | 11      | СОМ   | Common ground                               |
| 2       | AC2               | AC input                                        | 12      | AUX   | Auxiliary power supply                      |
| 3       | SP                | Surge protection                                | 13      | СВ    | Current balance for parallel operation      |
| 4       | R                 | External resistor for inrush current protection | 14      | ENA   | Enable signal or input power failure signal |
| 5       | +BC               | Boost output voltage (+)                        | 15      | SDA   | PMBus serial data line                      |
| 6       | -BC               | Boost output voltage (-)                        | 16      | SCL   | PMBus serial clock line                     |
| 7       | +V <sub>out</sub> | Output voltage (+)                              | 17      | ALERT | PMBus alert                                 |
| 8       | -V <sub>out</sub> | Output voltage (-)                              | 18      | CNT   | On/Off control (output side)                |
| 9       | +S                | Remote sense (+)                                | 19      | TRIM  | Adjustment of output voltage                |
| 10      | -S                | Remote sense (-)                                | 20      | ADDR  | Module address                              |

# **AC-DC Converter Technical Manual V1.1**

## **Mechanical Diagram**



## **NOTE**

- 1. All dimensions in mm [in.]. Tolerances: \*.\* ± 0.5 mm [\*.\*\* ± 0.02 in.] \*.\*\* ± 0.25 mm [\*.\*\* ± 0.010 in.] except special declaration.
- 2. Pin 1 6 are  $1.00 \pm 0.05$  mm  $[0.039 \pm 0.002 \text{ in.}]$  diameter, pin 7 and pin 8 are  $2.0 \pm 0.05$  mm  $[0.079 \pm 0.002 \text{ in.}]$  diameter.
- 3. Unit: MKS

# **Electrical Specifications**

| Parameter                              | Min.     | Тур.     | Max.  | Unit | Notes & Conditions                                                 |  |
|----------------------------------------|----------|----------|-------|------|--------------------------------------------------------------------|--|
| Environment characteristics            | <u> </u> | '        |       |      |                                                                    |  |
| Operating ambient temperature          | -40      | -        | 85    | °C   | -                                                                  |  |
| Storage and transportation temperature | -55      | -        | 125   | °C   | -                                                                  |  |
| Operating and storage humidity         | 10       | -        | 95    | %RH  | Non-condensing                                                     |  |
| Altitude range                         | 0        | -        | 5000  | m    | Certification: 4000 m                                              |  |
| Baseplate temperature                  | -40      | -        | 90    | °C   | -                                                                  |  |
| Absolute maximum ratings               |          |          |       |      |                                                                    |  |
| Input voltage<br>Continuous            | -        | -        | 315   | V AC | -                                                                  |  |
| Baseplate temperature                  | -        | <b>-</b> | 90    | °C   | Conduction cooled                                                  |  |
| Voltage to SCL/SDA/ADDR/CB             | -        | -        | 3.6   | V    | -                                                                  |  |
| Module number of parallel operation    | -        | -        | 2     | pcs  | -                                                                  |  |
| Input characteristics                  |          |          |       |      |                                                                    |  |
| Operating input voltage                | 90       | -        | 290   | V AC | -                                                                  |  |
| Rated input voltage                    | 100      | 110/220  | 240   | V AC | - 1 - 1 - 1 - 1 - 1                                                |  |
| Maximum input current                  | -        | -        | 8     | Α    | V <sub>in</sub> = 90 V AC, 100% load                               |  |
| Input incush ourrant                   | 4        | -        | 20    | Α    | V <sub>in</sub> = 110 V AC                                         |  |
| Input inrush current                   | -        | -        | 40    | Α    | V <sub>in</sub> = 220 V AC                                         |  |
| Input frequency                        | 47       | 50/60    | 63    | Hz   |                                                                    |  |
| Power factor                           | 0.95     | -        | -     |      | $T_A = 25$ °C, $V_{in} = 110/220$ V AC, 100% load                  |  |
| Total harmonic distortion (THD)        | -        | -        | 10    | %    | $T_A = 25$ °C, $V_{in} = 110/220$ V AC, $P_{out} = 500$ W          |  |
| No-load loss                           | -        | -        | 10    | W    | T <sub>A</sub> = 25°C, V <sub>in</sub> = 110 V AC                  |  |
| NO-10au 1055                           | -        |          | 12    | W    | $T_A = 25$ °C, $V_{in} = 220$ V AC                                 |  |
| Standby power loss                     | -        | -        | 5     | W    | $T_A = 25^{\circ}C$ , $V_{in} = 110/220 \text{ V AC}$              |  |
| Output characteristics                 |          |          |       |      |                                                                    |  |
| Output voltage trim range              | 36       | -        | 55    | V DC | By I2C or analog, the analog mode takes priority over the I2C mode |  |
| Output voltage set point               | 47.52    | 48.00    | 48.48 | V DC | T <sub>A</sub> = 25°C, V <sub>in</sub> = 110/220 V AC, 50% load    |  |
| Output power                           | -        | -        | 500   | W    | See Figure 3                                                       |  |

## **Electrical Specifications**

| Parameter                                                                     | Min.         | Тур. | Max.          | Unit                 | Notes & Conditions                                                                                                                                                               |
|-------------------------------------------------------------------------------|--------------|------|---------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output characteristics                                                        |              |      |               |                      |                                                                                                                                                                                  |
| Line regulation                                                               | -0.3         | -    | 0.3           | %                    | V <sub>out</sub> = 48 V DC, P <sub>out</sub> = 500 W                                                                                                                             |
| Load regulation                                                               | -0.8         | -    | 0.8           | %                    | -                                                                                                                                                                                |
| Regulated voltage precision                                                   | -3           | -    | 3             | %                    | The whole range of V <sub>in</sub> , I <sub>out</sub> and T <sub>A</sub>                                                                                                         |
| Temperature coefficient                                                       | -0.02        | -    | 0.02          | %/°C                 | The whole range of $V_{\rm in}$ , $I_{\rm out}$ and $T_{\rm A}$                                                                                                                  |
|                                                                               | 470×3        | -    | 470×11        | μF                   | Output capacitor: low ESR aluminum capacitor (Recommend product model: EKY-630ELL471MK25S NCC)                                                                                   |
| External load capacitor                                                       | 390          | -    | 390×2         | μF                   | Boost voltage bulk capacitor:<br>long(5000 h) life aluminum capacitor<br>(Recommend product model:<br>ELXS451VSN391MR50S NCC)                                                    |
|                                                                               | -            | -    | 550           | mV                   | -5°C ≤ T <sub>A</sub> ≤ 85°C<br>Oscilloscope bandwidth: 20 MHz                                                                                                                   |
| Output ripple and noise (peak to peak)                                        | -            | -    | 800           | mV                   | $-25^{\circ}\text{C} \le \text{T}_{\text{A}} < -5^{\circ}\text{C}$<br>Oscilloscope bandwidth: 20 MHz                                                                             |
|                                                                               | - 1          | -    | 800           | mV                   | $-40$ °C $\leq$ T <sub>A</sub> $<$ -25°C<br>Oscilloscope bandwidth: 20 MHz                                                                                                       |
| Hold up time                                                                  | 10           | -    | -             | ms                   | Output capacitor: 470 μF×3 Bulk capacitor: 390 μF T <sub>A</sub> = 25°C, 100% load, from input power outage drop to 90%Vout                                                      |
| Output voltage delay time                                                     | -            | -    | 8             | s                    | From V <sub>in</sub> connection to 10%V <sub>out</sub>                                                                                                                           |
|                                                                               | -            | -    | 100           | ms                   | From 10%V <sub>out</sub> to 90%V <sub>out</sub> , T <sub>A</sub> ≥ -25°C                                                                                                         |
| Output voltage rise time                                                      | -            | -    | 400           | ms                   | From $10\%V_{out}$ to $90\%V_{out}$ , $-40^{\circ}C \le T_A < -25^{\circ}C$<br>When the temperature is below -25°C, there are no requirement on the output voltage rise waveform |
| Output voltage overshoot                                                      |              | -    | 5             | %                    | The whole range of $V_{in}$ , $I_{out}$ and $T_A$                                                                                                                                |
| Current sharing accuracy                                                      | -10          | -    | 10            | %                    | Each output power > 200 W. The voltage difference between parallel modules should be less than 5%                                                                                |
| Protection characteristics                                                    |              |      |               |                      |                                                                                                                                                                                  |
| Input undervoltage protection Startup threshold Shutdown threshold Hysteresis | -<br>74<br>5 | -    | 90<br>85<br>- | V AC<br>V AC<br>V AC | -                                                                                                                                                                                |

## **Electrical Specifications**

| Parameter                                                                    | Min.            | Тур.        | Max.          | Unit                 | Notes & Conditions                                                                                                                   |
|------------------------------------------------------------------------------|-----------------|-------------|---------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Protection characteristics                                                   |                 |             |               |                      |                                                                                                                                      |
| Input overvoltage protection Startup threshold Shutdown threshold Hysteresis | 290<br>295<br>5 | -<br>-<br>- | -<br>310<br>- | V AC<br>V AC<br>V AC | -                                                                                                                                    |
| Output overvoltage protection                                                | -               | -           | 59.5          | V                    | Latch off                                                                                                                            |
| Output overcurrent protection                                                | 105             | -           | 150           | %                    | Self-recovery                                                                                                                        |
| Output short circuit protection                                              | -               | -           | -             | -                    | Self-recovery; The converter is not damaged even with long-term short circuits                                                       |
| Overtemperature protection  Baseplate  Hysteresis                            | 90<br>5         | -           |               | °C                   | Self-recovery; The values are obtained by measuring the temperature of the middle of the baseplate                                   |
| Dynamic characteristics                                                      |                 |             |               | •                    |                                                                                                                                      |
| Overshoot amplitude Recovery time                                            | -               | -           | 5<br>250      | %<br>µs              | T <sub>A</sub> = 25°C, V <sub>in</sub> = 110/220 V AC<br>Current change rate: 0.1 A/μs,<br>Load: 25% - 50% - 25%;<br>50% - 75% - 50% |
| Efficiency                                                                   |                 |             |               |                      |                                                                                                                                      |
| 100% load                                                                    | 87.0            | 90.2        | -             | %                    | $T_A = 25$ °C, $V_{in} = 110$ V AC; $I_{out} = 10.5$ A                                                                               |
| 100% load                                                                    | 90.0            | 92.8        | -             | %                    | T <sub>A</sub> = 25°C, V <sub>in</sub> = 220 V AC; I <sub>out</sub> = 10.5 A                                                         |
|                                                                              | 87.0            | 90.1        | -             | %                    | T <sub>A</sub> = 25°C, V <sub>in</sub> = 110 V AC; I <sub>out</sub> = 5.25 A                                                         |
| 50% load                                                                     | 90.0            | 92.1        | -             | %                    | T <sub>A</sub> = 25°C, V <sub>in</sub> = 220 V AC; I <sub>out</sub> = 5.25 A                                                         |
| Other characteristics                                                        | •               | •           | ,             |                      |                                                                                                                                      |
| Remote on/off voltage<br>Low level<br>High level                             | 0<br>2.4        | -           | 0.8<br>3.5    | V<br>V               | Negative logic                                                                                                                       |
| AUX                                                                          | 10              | -           | 14            | V                    | Auxiliary power output, the output current is less than 20 mA                                                                        |
| ENA                                                                          | -               | -           | - 1           | -                    | See <i>Enable (ENA)</i>                                                                                                              |
| +\$                                                                          |                 | -           | 5             | %V <sub>out</sub>    | One Bernata Con                                                                                                                      |
| -S                                                                           | -               | -           | 0.5           | V                    | See <i>Remote Sense</i>                                                                                                              |
| СВ                                                                           | 0               | =           | 3.3           | V                    | Sharing bus, CB to -S                                                                                                                |
| TRIM                                                                         | 0               | -           | 2.5           | V                    | TRIM to -S                                                                                                                           |

## **Electrical Specifications**

| Parameter                                 | Min.                        | Тур. | Max. | Unit             | Notes & Conditions                                                                                       |  |  |  |
|-------------------------------------------|-----------------------------|------|------|------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Other characteristics                     |                             |      |      |                  |                                                                                                          |  |  |  |
| Input voltage reported precision          | -10                         | -    | 10   | ٧                | T <sub>A</sub> = 25°C, V <sub>in</sub> = 90 - 290 V AC                                                   |  |  |  |
| Insulation characteristics                |                             |      |      |                  |                                                                                                          |  |  |  |
| Input to output insulation voltage        | -                           | -    | 4242 | V DC             | Reinforced insulation:                                                                                   |  |  |  |
| Input to baseplate insulation voltage     | -                           | -    | 3535 | V DC             | The leakage current should be less than 10 mA, test voltage ramp up                                      |  |  |  |
| Output to baseplate insulation voltage    | -                           | -    | 707  | V DC             | less than 500 V/s                                                                                        |  |  |  |
| Input to output insulation resistance     | 10                          | -    | -    | ΜΩ               |                                                                                                          |  |  |  |
| Input to baseplate insulation resistance  | 10                          | -    | -    | ΜΩ               | Normal atmospheric pressure;<br>90% humidity;<br>500 V DC                                                |  |  |  |
| Output to baseplate insulation resistance | 10                          | -    | -    | ΜΩ               |                                                                                                          |  |  |  |
| Reliability characteristics               | Reliability characteristics |      |      |                  |                                                                                                          |  |  |  |
| Mean time between failures (MTBF)         | -                           | 1.2  | -    | Million<br>hours | T <sub>Baseplate</sub> = 25°C, Telcordia SR332<br>Method 1 Case3; Normal Input/Rated<br>Output, 80% load |  |  |  |

Specifications are subject to change without notice.

# **AC-DC Converter Technical Manual V1.1**

#### **Characteristic Curves**

Conditions:  $T_A = 25$ °C.

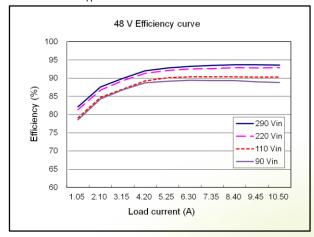
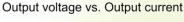




Figure 1: Efficiency



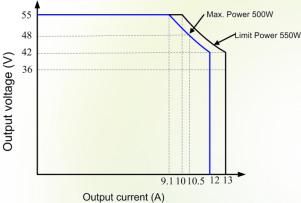



Figure 3: Output voltage vs. Output current

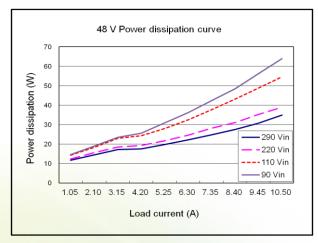



Figure 2: Power dissipation

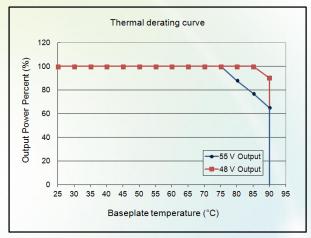



Figure 4: Thermal derating curve ( $V_{in} = 110/220 \text{ V}$ , ambient temperature  $T_A = 85^{\circ}\text{C}$ )

# **AC-DC Converter Technical Manual V1.1**

## **Typical Waveforms**

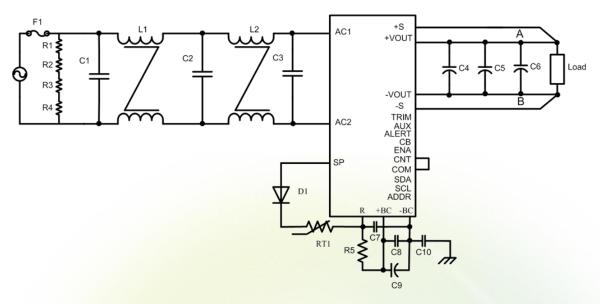



Figure 5: Test set-up diagram

F1: 15 A, 250 V AC

C1, C2, C3: The 1  $\mu$ F/275 V AC film capacitor is recommended.

C4, C5, C6: The 470 µF/63 V low ESR aluminum electrolytic capacitor is recommended.

C7, C8: The 1.5 µF/450 V film capacitor is recommended.

C9: The 390 µF/450 V long life (5000 h) aluminum electrolytic capacitor is recommended.

C10: The 2200 pF capacitor is recommended.

L1: Common-mode inductor (single phase, 3.5 mH). L2: Common-mode inductor (single phase, 5 - 12 mH).

R1, R2, R3, R4: 100 kΩ/0.25 W resistor

R5: Cement resistor 75 Ω/5 W

RT1: Negative Temperature Coefficient (NTC) resistor 1 Ω

D1: 1 kV/3 A

## **NOTE**

Points A and B, which are for testing the output voltage ripple, are 25 mm (0.98 in.) away from the  $V_{out}(+)$  pin and the  $V_{out}(-)$  pin.

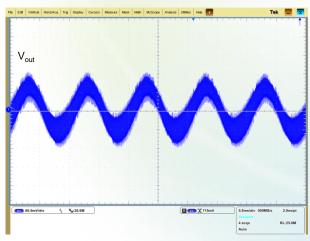



Figure 6: Output voltage ripple (For point AB in the test set-up diagram,  $V_{in} = 110 \text{ V AC}$ ,  $V_{out} = 48 \text{ V}$ ,  $I_{out} = 10.5 \text{ A}$ )

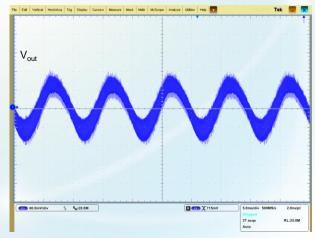



Figure 7: Output voltage ripple (For point AB in the test set-up diagram,  $V_{in} = 220 \text{ V AC}$ ,  $V_{out} = 48 \text{ V}$ ,  $I_{out} = 10.5 \text{ A}$ )

# **AC-DC Converter Technical Manual V1.1**

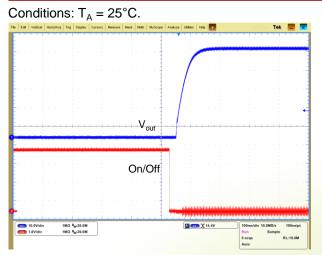



Figure 8: Startup from On/Off (V<sub>in</sub> = 110 V AC, 100% load)

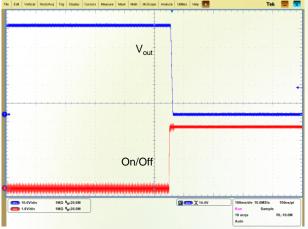



Figure 10: Shutdown from On/Off (V<sub>in</sub> = 110 V AC,

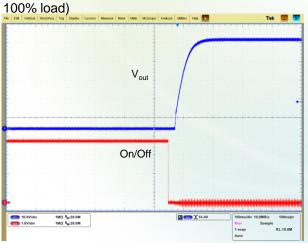



Figure 12: Startup from On/Off (V<sub>in</sub> = 220 V AC, 100% load)

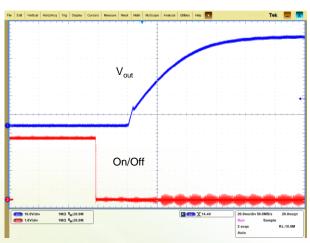



Figure 9: Startup from On/Off (V<sub>in</sub> = 110 V AC, 100% load)

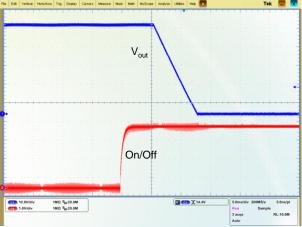



Figure 11: Shutdown from On/Off (V<sub>in</sub> = 110 V AC, 100% load)

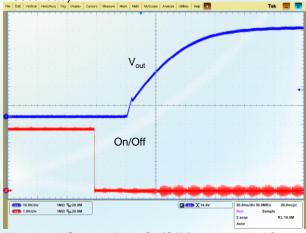



Figure 13: Startup from On/Off ( $V_{in}$  = 220 V AC, 100% load)



# **AC-DC Converter Technical Manual V1.1**

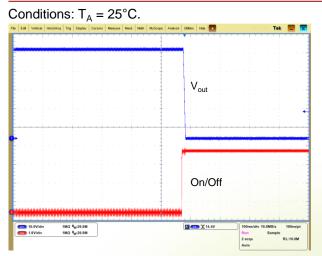



Figure 14: Shutdown from On/Off (V<sub>in</sub> = 220 V AC, 100% load)

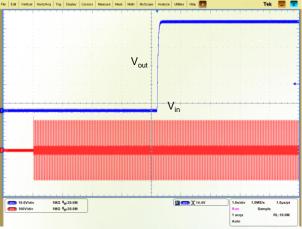



Figure 16: Startup by power on  $(V_{in} = 110 \text{ V AC}, 1000 \text{ Jpc})$ 

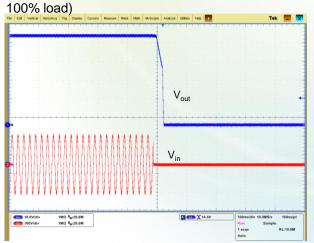



Figure 18: Shutdown by power off ( $V_{in} = 110 \text{ V AC}$ , 100% load)

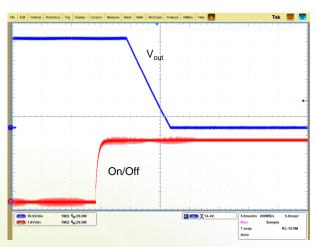



Figure 15: Shutdown from On/Off (V<sub>in</sub> = 220 V AC, 100% load)

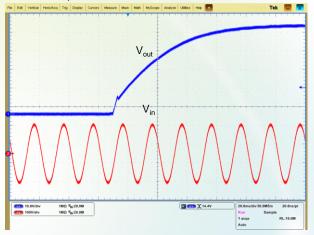



Figure 17: Startup by power on  $(V_{in} = 110 \text{ V AC}, 100\% \text{ load})$ 

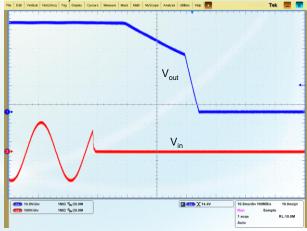



Figure 19: Shutdown by power off ( $V_{in} = 110 \text{ V AC}$ , 100% load)



# **AC-DC Converter Technical Manual V1.1**

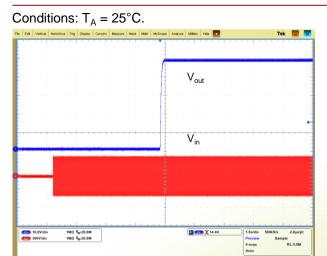



Figure 20: Startup by power on  $(V_{in} = 220 \text{ V AC}, 100\% \text{ load})$ 

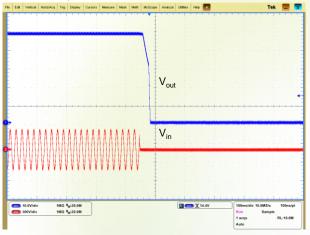



Figure 22: Shutdown by power off ( $V_{in} = 220 \text{ V AC}$ , 100% load)

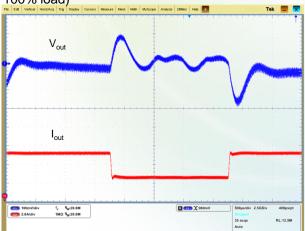



Figure 24: Output voltage dynamic response ( $V_{in}$  = 110 V AC, load: 50% - 25% - 50%, di/dt = 0.1 A/µs)

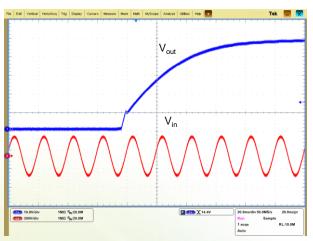



Figure 21: Startup by power on (V<sub>in</sub> = 220 V AC, 100% load)

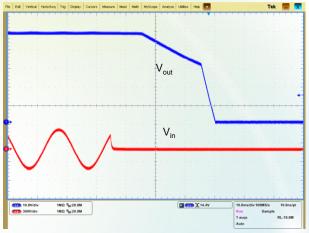



Figure 23: Shutdown by power off ( $V_{in} = 220 \text{ V AC}$ , 100% load)

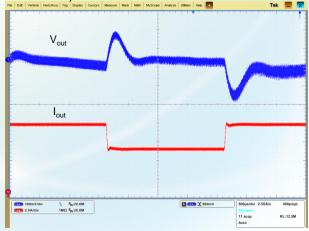



Figure 25: Output voltage dynamic response ( $V_{in}$  = 110 V AC, load: 75% - 50% - 75%, di/dt = 0.1 A/µs)



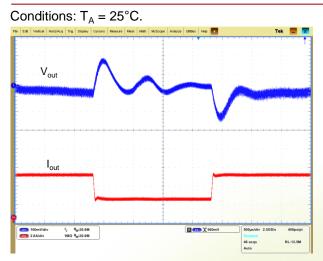



Figure 26: Output voltage dynamic response ( $V_{in}$  = 220 V AC, load: 50% - 25% - 50%, di/dt = 0.1 A/µs)

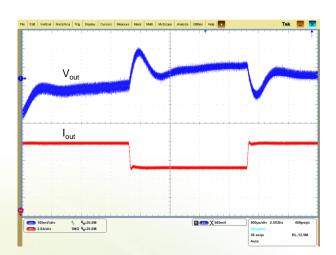



Figure 27: Output voltage dynamic response ( $V_{in}$  = 220 V AC, load: 75% - 50% - 75%, di/dt = 0.1 A/µs)

# **AC-DC Converter Technical Manual V1.1**

## **Typical Circuit Application**

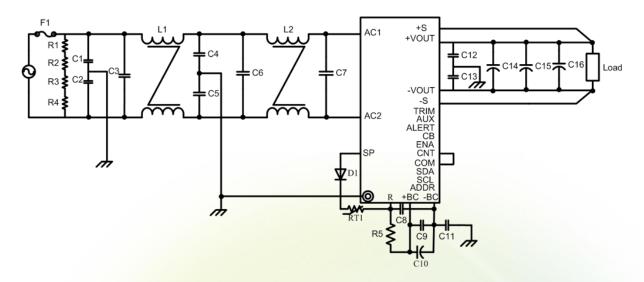



Figure 28: Typical circuit application

R1, R2, R3, R4: 0.25 W, 100 k $\Omega$ R5: Cement resistor, 5 W, 75  $\Omega$ 

F1: 15 A, 250 V AC

L1: 3.5 mH, L2: 5 - 12 mH

C1, C2: Ceramic capacitor, 1 nF, 250 V

C3, C6, C7: Film capacitor, 1 µF, 275 V AC

C4, C5: 10 nF, 250 V AC

C8, C9: Film capacitor, 1.5 µF, 450 V

C10: Long life (5000 h) aluminum electrolytic capacitor, 390 µF, 450 V (Recommended product model: ELXS451VSN391MR50S NCC.)

C11: 2200 pF

C12, C13: 100 nF, 1 kV

C14, C15, C16: Low ESR aluminum electrolytic capacitor, 470 µF, 63 V (Recommended product model: EKY-630ELL471MK25S NCC.)

D1: 1 kV, 3 A

RT1: Negative Temperature Coefficient (NTC) resistor 1 Ω



C10, C14, C15, C16: When the temperature is lower than -25°C, double the recommended capacitor.

# **AC-DC Converter Technical Manual V1.1**

#### **Remote Sense**

This function is used to compensate for voltage drops on  $R_w$ . The +S, -S,  $V_{out}(+)$ , and  $V_{out}(-)$  terminals should meet the following requirements:

$$[V_{out}(+) - +S] \le 5\%V_{out}$$
  
 $[(-S) - V_{out}(-)] \le 0.5 \text{ V}$ 

( $V_{out}$  is the rated output voltage. 36 V  $\leq$  [ $V_{out}(+) - V_{out}(-)$ ]  $\leq$  55 V)

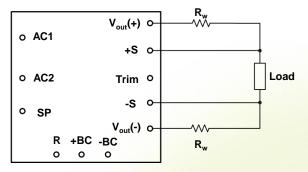



Figure 29: Configuration diagram for remote sense

 $R_{\rm w}$  indicates the line impedance between the output terminal and the load.

If the remote sense function is disabled, the +S terminal directly connects to the  $V_{out}(+)$  terminal and the -S terminal directly connects to the  $V_{out}(-)$  terminal.

### **Output Voltage Trim**

The output voltage can be adjusted according to the trim range specification by using the Trim pin.

#### **Trim Up**

The output voltage can be increased by installing an external resistor between the Trim pin and the +S pin.

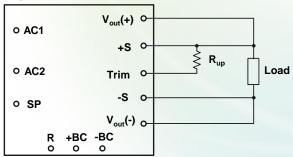



Figure 30: Configuration diagram for Trim up

The relationship between R<sub>up</sub> and V<sub>out</sub>:

$$R_{up} = \frac{46300 \times V_{out}}{V_{out} - 48} - 3300(\Omega)$$

#### **Trim Down**

The output voltage can be decreased by installing an external resistor between the Trim pin and the -S pin.

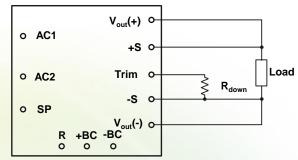



Figure 31: Configuration diagram for Trim down

The relationship between R<sub>down</sub> and V<sub>out</sub>:

$$R_{down} = \frac{2000 \times V_{out}}{48 - V_{out}} - 3300(\Omega)$$

# **NOTE**

- 1. If the Trim pin is not used, it should be left open.
- When the output voltage adjustment is used, be sure not to exceed the output voltage range or else the overvoltage protection function will be activated.
- Ensure that the actual output power does not exceed the maximum output power when raising the voltage.

## **Enable (ENA)**

Enable signal means that the output voltage of the inverter is normal and can supply power for load at the second side (Maximum sink current is 10 mA and maximum applied voltage is 75 V). When output voltage goes over 30 V at start up, ENA signal is low resistance; when output voltage drops below 28 V or input power failure, ENA signal is high resistance. The logic of Enable is as following:

| Logic<br>Enable   | ENA               | Output Voltage                             |
|-------------------|-------------------|--------------------------------------------|
| Negative<br>Logic | High resistance   | ≤ 28 V or Input fault, input power failure |
|                   | Low<br>resistance | > 30 V                                     |

# **AC-DC Converter Technical Manual V1.1**

### **Enable (ENA)**

The enable signal is pulled up to the AUX by a 10  $k\Omega$  external resistor, indicated by an LED. The recommended circuit diagram of enable is shown in Figure 32:

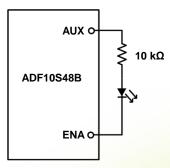



Figure 32: Recommended circuit diagram of Enable

## Remote CNT (On/Off)

Remote control function realizes output enable or disable without turning the input power supply on and off. When this output On/Off control is not used, be sure to short CNT to COM terminal. The logic of On/Off are as following:

| Logic<br>Enable | On/Off                  | 48 V<br>Output |
|-----------------|-------------------------|----------------|
| Negative        | Low level               | On             |
| Logic           | High level or left open | Off            |

The configuration diagram of CNT(On/Off) is as following:

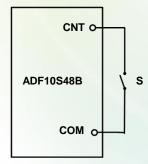



Figure 33: Configuration diagram of CNT(On/Off) signal

## **Auxiliary Power Supply (AUX)**

The AUX terminal supplies auxiliary power for an external circuit with a typical output voltage of 12 V. Be careful not to short-circuit the AUX terminal and other terminals or the power module; otherwise, the power module would be damaged. Do not connect the AUX terminal if you do not need to supply power to any external circuit.

## **Parallel Operation (CB terminal)**

When several power modules are used in parallel, an output current can be equally drawn from each one by connecting the CB terminals of all modules. A maximum of two units of the same module can be connected. The output power of two modules connected in parallel is equal to or less than 90% of the power of two fully loaded modules.

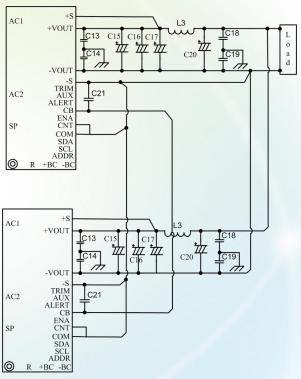



Figure 34: The circuit for parallel operation

# **NOTE**

- 1. L3: High frequency inductor 0.3 μH
- C20: Aluminum electrolytic capacitor 63 V, 470 µF
- 3. C21: 1 μF, 16 V
- 4. Other capacitor parameters see *EMC*.



# **AC-DC Converter Technical Manual V1.1**

#### **PMBus Communication**

The converter communicates with the system over the PMBus. PMBus address with the following table:

| R (ADDR pull-down resistor) | Address |
|-----------------------------|---------|
| Open                        | Invalid |
| 200 kΩ                      | 0x5F    |
| 174 kΩ                      | 0x5E    |
| 150 kΩ                      | 0x5D    |
| 124 kΩ                      | 0x5C    |
| 100 kΩ                      | 0x5B    |
| 75 kΩ                       | 0x5A    |
| 49.9 kΩ                     | 0x59    |
| 24.9 kΩ                     | 0x58    |
| Ground                      | Invalid |

#### Bit is as follows:

| Bit | 7       | 6 | 5 | 4 | 3 | 2 | 1 | 0          |
|-----|---------|---|---|---|---|---|---|------------|
| -   | Address |   |   |   |   |   |   | Read/Write |

#### **Monitor and Faults**

The converter communicates with the system over the PMBus. The ADF10S48B provides the following monitoring and communication functions and fault detection functions:

#### Monitoring functions:

- Module information
- Input voltage
- Input power
- Output voltage
- Output power
- Baseplate temperature
- CNT(On/off)

#### Faults detection functions:

- Reports faults for input faults
- Reports faults for output overvoltage
- Reports faults for output overcurrent
- Reports faults for baseplate overtemperature

#### **SCL and SDA**

The SCL and SDA signal has an internal pull-up resistor, connected to the communication bus through the fault isolation circuit. Figure 35 shows the SCL and SDA connection diagram.

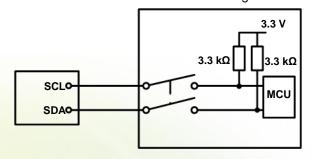



Figure 35: SCL and SDA connection diagram

#### **PMBus Timing Diagram**

The power supply supports both 100 kHz and 400 kHz clock rates, and 100 kHz is the default one.  $T_{\rm set}$  is the duration for which SDA keeps its value unchanged before SCL increases.  $T_{\rm hold}$  is the duration for which SDA keeps its value unchanged after SCL decreases. The communication will fail if the time is not consistent with the specifications.

The following table lists the timing characteristics of the PMBus communications interface and Figure 36 shows the timing diagram of the interface.

| Parameter                             | Min.  | Тур. | Max. | Unit |
|---------------------------------------|-------|------|------|------|
| Logic input low (V <sub>IL</sub> )    | _     | 1    | 1.1  | >    |
| Logic input high (V <sub>IH</sub> )   | 2.1   |      | -    | ٧    |
| Logic output low (V <sub>OL</sub> )   | -     | -    | 0.25 | V    |
| Logic output high (V <sub>OH</sub> )  | 2.7   | -    | -    | V    |
| PMBus setting-up time                 | 100   | -    | -    | ns   |
| PMBus holding time                    | 0     | -    | -    | ns   |
| Clock/data fall time(t <sub>f</sub> ) | 20+   | -    | 300  | ns   |
| Clock/data rise time(t <sub>r</sub> ) | 0.1Cb |      | 300  | ns   |
| Total capacitance of one bus line(Cb) | -     |      | 400  | pF   |

# **AC-DC Converter Technical Manual V1.1**

#### **PMBus Communication**

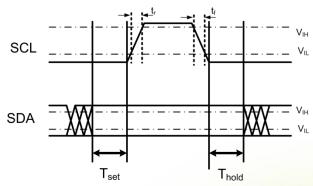



Figure 36: PMBus timing diagram

#### **PMBus Commands**

| Hex<br>Code | Command<br>Name            | Data Type          | Data<br>Byte | Data<br>Format |
|-------------|----------------------------|--------------------|--------------|----------------|
| Contr       | ol commands                |                    |              |                |
| 01h         | OPERATION                  | Read/Write<br>Byte | 1            | -              |
| 03h         | CLEAR_FAU<br>LTS           | Send Byte          | 0            | -              |
| Outpu       | it commands                |                    |              |                |
| 20h         | VOUT_MOD<br>E              | Read Byte          | 1            | -              |
| 21h         | VOUT_COM<br>MAND           | Read/Write<br>Word | 2            | Linear 16      |
| Alarm       | commands                   |                    |              |                |
| 51h         | OT_WARN_<br>LIMIT          | Read/Write<br>Word | 2            | Linear 11      |
| Status      | commands                   |                    |              |                |
| 79h         | STATUS_W<br>ORD            | Read Word          | 2            | -              |
| Monit       | oring comma                | nds                |              |                |
| 88h         | READ_VIN                   | Read Word          | 2            | Linear 11      |
| 8Bh         | READ_VOU<br>T              | Read Word          | 2            | Linear 16      |
| 8Ch         | READ_IOUT                  | Read Word          | 2            | Linear 11      |
| 8Dh         | READ_TEM<br>PERATURE_<br>1 | Read Word          | 2            | Linear 11      |
| 96h         | READ_POU<br>T              | Read Word          | 2            | Linear 11      |

|       | Command<br>Name                   | IDATA IVDE I |   | Data<br>Format                           |  |  |  |  |  |
|-------|-----------------------------------|--------------|---|------------------------------------------|--|--|--|--|--|
| Monit | Monitoring commands               |              |   |                                          |  |  |  |  |  |
| 97h   | READ_PIN                          | Read Word    | 2 | Linear 11                                |  |  |  |  |  |
| 98h   | PMBUS_RE<br>VISION                | Read Byte    | 1 | -                                        |  |  |  |  |  |
| E9h   | MFR_STATU<br>S_WORD               | Read Word    | 2 | -                                        |  |  |  |  |  |
| ECh   | MFR_WRITE<br>_SYSTIME             | Write Block  | 4 | Time: S<br>Low byte                      |  |  |  |  |  |
| EFh   | MFR_READ<br>_LAST_ACD<br>ROP_TIME | Read Block   | 8 | in the former, the high byte in the post |  |  |  |  |  |
| F6h   | WRITE_STA<br>NDBY                 | Write Byte   | 1 | 0x20:<br>RESET<br>0x00:<br>Standby       |  |  |  |  |  |

#### **Data Format**

#### ●Linear 11 Data Format

The linear data format is a two byte value with an 11-bit, two's complement mantissa and a 5-bit, two's complement exponent or scaling factor, as shown in the following Figure 37.

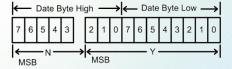



Figure 37: Linear 11 Data Format

The relationship between the N, Y, and actual value is given by the following equation:

$$X = Y \times 2^N$$

#### where

X is the value

Y is the 11-bit, two's complement mantissa. N is the 5-bit, two's complement exponent.

#### VOUT Data Format

Commands related to output voltage are the VOUT\_COMMAND, VOUT\_MODE and READ\_VOUT. They are unsigned integers using the Linear 16 formats, as shown in the following Figure 38.

# **AC-DC Converter Technical Manual V1.1**

#### **PMBus Communication**

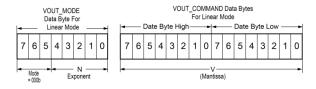



Figure 38: VOUT Data Format

The power supply is not required to support the VOUT\_COMMAND, but must adhere to the VOUT data format. The output voltage is calculated as follows:

Voltage =  $V \times 2^N$ 

where

Voltage is the output voltage value.

V is the 16-bit unsigned integer.

N is the 5-bit signed integer (two's complement).

#### **Command Descriptions**

OPERATION (01h): By default the Power supply is turned ON at power up as long as Enable is active low.

The Operation command is used to turn the Power Supply ON or OFF via the PMBus. The data byte below follows the OPERATION command.

| Function | Data Byte |
|----------|-----------|
| ON       | 0x80      |
| RESET    | 0x00      |
| OFF      | 0x55      |

To RESET the power supply cycle the power supply OFF, wait at least 10 seconds, and then turn ON. All alarms and shutdowns are cleared during a restart.

CLEAR\_FAULTS (03h): This command clears the latch fault bits.

VOUT\_MODE (20h): This command is used to determine the data type and parameters using PMBus command.

VOUT\_COMMAND (21h): This command is used to change the output voltage of the power supply. The default value is 48 V. Voltage margin range: 36 V - 55 V.

STATUS\_WORD (79h): Module fault information, latch off.

| Bit      | Bit Fault Name Fault Definition |                                   |
|----------|---------------------------------|-----------------------------------|
| b6 - b15 | 1                               | 1                                 |
| b5       | VOUT_OV                         | 1 - Overvoltage<br>0 - Normal     |
| b4       | IOUT_OC                         | 1 - Overcurrent<br>0 - Normal     |
| b3       | 1                               | -                                 |
| b2       | OVER_TEMP<br>ERATURE            | 1 - Overtemperature<br>0 - Normal |
| b0, b1   | -                               | -                                 |

MFR\_STATUS\_WORD (E9h): Power state. Don't latch.

| Bit      | Fault Name       | Fault Definition  |
|----------|------------------|-------------------|
| b1 - b15 | -                | -                 |
| b0       | REMOTE<br>ON/OFF | 1 - OFF<br>0 - ON |

MFR\_WRITE\_SYSTIME (ECh): As the converter does not have a time chip, the system uses the ECh command to deliver the system time to the converter. The converter then runs based on the delivered system time in unit of seconds. To ensure time accuracy, it is recommended that the system synchronize time to the converter every 10 minutes. The MFR\_WRITE\_SYSTIME command format is shown in Figure 39:

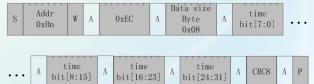



Figure 39: MFR\_WRITE\_SYSTIME command format



S: Start Condition; R: Read bit value of 1; W: Write bit value of 0; A: Acknowledge bit, may be ACK or NACK; P: Stop Condition.

# **AC-DC Converter Technical Manual V1.1**

#### **PMBus Communication**

MFR\_READ\_LAST\_ACDROP\_TIME (EFh): The converter can record the last disconnection time. It reads the time using the EFh command. The EFh data format is shown in the figure. The time occupies four bytes and the high-oder byte takes precedence over the low-order byte during transmission.

The MFR\_READ\_LAST\_ACDROP\_TIME command format is shown in Figure 40:

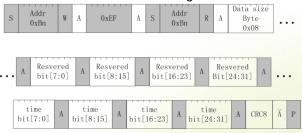



Figure 40: MFR\_READ\_LAST\_ACDROP\_TIM command format

The converter uses 8-bit cyclic redundancy check (CRC). The generator polynomial is C(x) = x8 + x2 + x1 + 1, or 0b100000111 if expressed in binary form.

The power supply is compliant with the Power Management Bus (PMBus) Protocol Specification rev1.2 requirements. For details about the PMBus Commands, see the *PMBus Protocol Specification rev1.2*.

## Input Overvoltage Protection

The converter will shut down after the input voltage exceeds the input overvoltage protection threshold for shutdown. The converter will start to work again after the input voltage reaches the input overvoltage recovery threshold for startup. For the Hysteresis, see the *Protection characteristics*.

## Input Undervoltage Protection

The converter will shut down after the input voltage drops below the undervoltage protection threshold for shutdown. The converter will start to work again after the input voltage reaches the input undervoltage recovery threshold for startup. For the Hysteresis, see the *Protection characteristics*.

## **Output Overvoltage Protection**

When the voltage directly across the output pins exceeds the output overvoltage protection threshold, the converter will enter hiccup mode. If the converter experiences five consecutive times of overvoltage due to an internal fault within 20s or less, the converter latches out. You need to power off the converter to make it exit the locking mode. It must be more than 20s since input source power-off to power-on. The converter dynamic overvoltage does not exceed 69 V.

### **Output Overcurrent Protection**

When the output current exceeds the output overcurrent protection threshold, the converter will enter a hiccup mode. When the fault condition is removed, the converter will automatically restart.

### **Overtemperature Protection**

A temperature sensor on the converter senses the average temperature of the module. It protects the converter from being damaged at high temperatures. When the temperature exceeds the overtemperature protection threshold, the output will shut down. If the temperature falls by or below the overtemperature protection recovery threshold more than 5 minutes after the converter shuts down, the output recovers. Note that the sensor does not sense the temperature within 5 minutes after the output shuts down. Therefore, even if the temperature falls to a very low level within 5 minutes after the output.

## **Cooling Characteristics**

When the power module is running, the temperature of the baseplate must not exceed 90°C. The power module supports natural cooling and fan cooling. Customers can select heat sink models depending on the onsite conditions.



# **AC-DC Converter Technical Manual V1.1**

#### **EMC**

Figure 41 shows the EMC test set-up diagram. The acceptance standard is required as the conducted emission limits of CISPR22 Class B with 6 dB margin. The operation with Surges/Impulse Current, the level of Surge is CM/DM 6 kV/6 kV 2  $\Omega$  (1.2/50), and the level of Impulse Current is CM/DM 5 kA/5 kA (8/20).

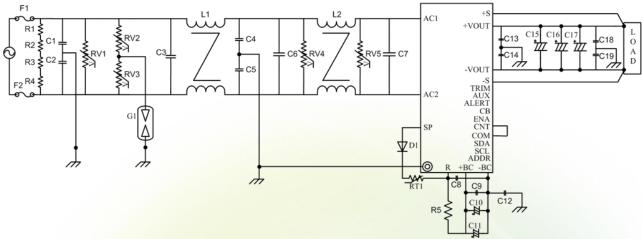



Figure 41: EMC test set-up diagram

R1, R2, R3, R4: 0.25 W,  $100 \text{ k}\Omega$ R5: Cement resistor, 5 W,  $75 \Omega$ 

F1, F2: 15 A, 250 V AC

RV1: 620 V - 385 V - 12 kA RV2, RV3: 750 V - 460 V - 12 kA

RV4: 620 V - 385 V - 12 kA

RV5: 620 V - 385 V - 4.5 kA

L1: 3.5 mH, L2: 5 - 12 mH

C1, C2: Ceramic capacitor, 1 nF, 250 V

C3, C6, C7: Film capacitor, 1 µF, 275 V AC

C4, C5: 10 nF, 250 V AC

C8, C9: Film capacitor, 1.5 µF, 450 V

C10, C11: Long life (5000 h) aluminum electrolytic capacitor, 390 µF, 450 V (Recommended product model: ELXS451VSN391MR50S NCC.)

C12: 2200 pF

C13, C14: 100 nF, 1 kV

C15, C16, C17: Low ESR aluminum electrolytic capacitor, 470 µF, 63 V

(Recommended product model: EKY-630ELL471MK25S NCC.)

C18, C19: 22 nF, 1 kV

D1: 1 kV, 3 A

RT1: Negative Temperature Coefficient (NTC) resistor 1  $\Omega$ 

G1: 10 kA, 1.5 kV



C10, C11, C15, C16, C17: When the temperature is lower than -25°C, double the recommended capacitor.



## **Qualification Testing**

| Parameter                                   | Units | Condition                                                                                                                                                                                                     |
|---------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Accelerated Life<br>Test (HALT)        | 6     | Low temperature limit: -60°C; high temperature limit: 110°C; vibration limit: 40 G; temperature slope: 40°C per minute; vibration frequency range: 10 Hz - 10000 Hz                                           |
| Temperature Humidity<br>Bias (THB)          | 12    | Maximum input voltage; 85°C; 85% RH; 1000 operating hours under lowest load power                                                                                                                             |
| High Temperature<br>Operation Bias (HTOB)   | 12    | Rated input voltage; air flow: 0.5 m/s (100 LFM) to 5 m/s (1000 LFM); ambient temperature between +45°C and +55°C; 1000 operating hours; 50% to 80% load                                                      |
| Power and Temperature<br>Cycling Test (PTC) | 12    | Rated input voltage; air flow: 0.5 m/s (100 LFM) to 5 m/s (1000 LFM); ambient temperature between -40°C and +85°C; 1000 operating hours; 50% load; temperature slope: 15°C per minute; dwell time: 22 minutes |

#### **Thermal Consideration**

#### **Thermal Test Point**

Sufficient airflow should be provided to ensure reliable operating of the converter. Therefore, thermal components are mounted on the top surface of the converter to dissipate heat to the surrounding environment by conduction, convection and radiation. Proper airflow can be verified by measuring the temperature at the middle of the baseplate.



Figure 42: Thermal test point

#### **Power Dissipation**

The converter power dissipation is calculated based on efficiency. The following formula reflects the relationship between the consumed power ( $P_d$ ), efficiency ( $\eta$ ), and output power ( $P_o$ ):  $P_d = P_o(1-\eta)/\eta$ 

#### **Mechanical Consideration**

#### Installation

Although the converter can be mounted in any direction, free airflow must be taken.

#### Soldering

The converter is compatible with standard wave soldering or hand soldering. No reflow soldering is allowed.

- For wave soldering, the temperature on converter is specified to maximum 260°C for maximum 7 seconds.
- 2. For hand soldering, the iron temperature should be maintained at 350°C to 420°C, and applied to the converter pins for less than 10 seconds.

The converter can be rinsed using the isopropyl alcohol (IPA) solvent or other proper solvents.

#### **HUAWEI TECHNOLOGIES CO., LTD.**

Huawei Industrial Base Bantian Longgang Shenzhen 518129 People's Republic of China www.huawei.com

