Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey. At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ereasnable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Action Employer. This literature is subject to all applicatione claimed as not for resale in any manner. Other names and brands may be claimed as the property of others.

onsemi

Intelligent Power Module (IPM), 600 V, 10 A

STK544UC63K-E

The STK544UC63K–E is a fully–integrated inverter power stage consisting of a high–voltage driver, six IGBT's and a thermistor, suitable for driving permanent magnet synchronous (PMSM) motors, brushless–DC (BLDC) motors and AC asynchronous motors. The IGBT's are configured in a 3–phase bridge with separate emitter connections for the lower legs for maximum flexibility in the choice of control algorithm. The power stage has a full range of protection functions including cross–conduction protection, external shutdown and under–voltage lockout functions. An internal comparator and reference connected to the over–current protection circuit allows the designer to set the over–current protection level.

Features

- Three-phase 10 A/600 V IGBT Module with Integrated Drivers
- Built-in Under Voltage Protection
- Cross-conduction Protection
- ITRIP Input to Shut Down All IGBTs
- Integrated Bootstrap Diodes and Resistors
- Thermistor for Substrate Temperature Measurement
- UL1557 Certification (File Number: E339285)
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Industrial Drives
- Industrial Pumps
- Industrial Fans
- Industrial Automation

Figure 1. Functional Diagram

SIP23 62x21.8 CASE 127FC

MARKING DIAGRAM

= Work Week

Device marking is on package top side

WW

ORDERING INFORMATION

Device	Package	Shipping (Qty/Packing)
STK544UC63K-E	SIP23 62x21.8FP-4 (Pb-Free)	80/Box

Figure 2. Application Schematic

Figure 3. Simplified Block Diagram

PIN DESCRIPTION

Pin No.	Name	Description
1	VB(W)	High Side Floating Supply Voltage for W phase
2	VS(W), W	Internally connected to W phase high side driver ground. W phase output
4	VB(V)	High Side Floating Supply voltage for V phase
5	VS(V), V	Internally connected to V phase high side driver ground. V phase output
7	VB(U)	High Side Floating Supply voltage for U phase
8	VS(U), U	Internally connected to U phase high side driver ground. U phase output
10	Р	Positive Bus Input Voltage
12	NU	Low Side Emitter Connection – Phase U
13	NV	Low Side Emitter Connection – Phase V
14	NW	Low Side Emitter Connection – Phase W
15	HIN(U)	Logic Input High Side Gate Driver - Phase U
16	HIN(V)	Logic Input High Side Gate Driver - Phase V
17	HIN(W)	Logic Input High Side Gate Driver - Phase W
18	LIN(U)	Logic Input Low Side Gate Driver – Phase U
19	LIN(V)	Logic Input Low Side Gate Driver – Phase V
20	LIN(W)	Logic Input Low Side Gate Driver – Phase W
21	T/ITRIP	Temperature Monitor and Shut-down pin
22	VDD	+15 V Main Supply
23	VSS	Negative Main Supply

1. Pins 3, 6, 9 and 11 are not present

ABSOLUTE MAXIMUM RATINGS (at Tc = 25°C) (Note 2)

Symbol	Rating	Conditions	Value	Unit
V _{CC}	Supply voltage	P to NU, NV, NW, surge < 500 V (Note 3)	450	V
V _{CE}	Collector-emitter voltage	P to U, V, W; U to NU; V to NV; W to NW	600	V
lo	Output current	P, U, V, W, NU, NV, NW terminal current	±10	А
		P, U, V, W, NU, NV, NW terminal current, Tc = 100°C	±5	А
lop	Output peak current	P, U, V, W, NU, NV, NW terminal current, pulse width 1 ms	±20	А
Pd	Maximum power dissipation	IGBT per 1 channel	20	W
V _{BS}	Gate driver supply voltage	VB(U) to VS(U), VB(V) to VS(V), VB(W) to VS(W), VDD to VSS (Note 4)	-0.3 to +20.0	V
VIN	Input signal voltage	HIN(U), HIN(V), HIN(W), LIN(U), LIN(V), LIN(W)	-0.3 to +7.0	V
VITRIP	ITRIP terminal voltage	T/ITRIP terminal	VSS to +5.0	V
Tj	Junction temperature	IGBT, FRD	150	°C
Tstg	Storage temperature		-40 to +125	°C
Тс	Operating case temperature	IPM case temperature	-40 to +100	°C
MT	Tightening torque	Case mounting screws	0.9	Nm
Vis	Isolation voltage	50 Hz sine wave AC 1 minute (Note 5)	2000	Vrms

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Arele to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/of Arelication information Operating parameters.
 This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminal.
 VBS = VB(U) to VS(U), VB(V) to VS(V), VB(W) to VS(W).
 Test conditions: AC2500V, 1 s.

RECOMMENDED OPERATING CONDITIONS

r

Symbol	Rating	Conditions	Min	Тур	Max	Unit
V _{CC}	Supply voltage	P to NU, NV, NW	0	280	450	V
VBS	Gate driver supply voltage	VB(U) to VS(U), VB(V) to VS(V), VB(W) to VS(W)	13.0	15	17.5	V
V _{DD}		VDD to VSS	14.0	15	16.5	V
VIN(ON)	ON-state input voltage	HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),	0	-	0.3	V
VIN(OFF)	OFF-state input voltage		3.0	-	5.0	V
f _{PWM}	PWM frequency		1	-	20	kHz
DT	Dead time	Turn-off to Turn-on (external)	0.5	-	-	μs
PWIN	Allowable input pulse width	ON and OFF	1	_	-	μs
	Tightening torque	'M3' type screw	0.6	_	0.9	Nm

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Tc = 25°C, V_{BIAS} (V_{BS}, V_{DD}) = 15 V unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
POWER O	UTPUT SECTION					
I _{CE}	Collector-emitter leakage current	V _{CE} = 600 V	-	-	0.1	mA
IR(BD)	Bootstrap diode reverse current	VR(DB) = 600 V	-	-	0.1	mA
V _{CE} (SAT	Collector to emitter saturation voltage	IC = 10 A, Tj = 25°C	-	2.1	2.7	V
)		IC = 5 A, Tj = 100°C	-	1.7	-	V
VF	Diode forward voltage	IF = 10 A, Tj = 25°C	-	2.2	2.8	V
		IF = 5 A, Tj = 100°C	-	1.7	-	V
VF(BD)	Bootstrap diode forward voltage	IF = 0.1 A	-	2.0	-	V
R _{BC}	Bootstrap circuit resistance	Resistor value for common boot charge line	-	2	-	Ω
R _{BS}		Resistor value for separate boot charge line	-	10	-	Ω
θj–c(T)	Junction to case thermal resistance	IGBT	-	4.9	6.2	°C/W
θ-c(D)		FRD	-	8.5	10.6	°C/W
DRIVER S	ECTION					

ID	Gate driver consumption current	V _{BS} = 15 V (Note 6), per driver		0.08	0.4	mA
ID		V _{DD} = 15 V, total	-	2.0	4.0	mA
VIN H	High level Input voltage	HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),	2.5	-	-	V
VIN L	Low level Input voltage		-	-	0.8	V
I _{IN+}	Logic 0 input leakage current		76	118	160	μΑ
I _{IN-}	Logic 1 input leakage current		97	150	203	μΑ
V _{ITRIP}	ITRIP threshold voltage	T/ITRIP to VSS	3.67	4.17	4.67	V
t _{ITRIP}	ITRIP to shutdown propagation delay		0.8	1.1	1.4	μs
t _{ITRIPBL}	ITRIP blanking time		-	0.9	-	μs
FLTCLR	FAULT clearance delay time	Automatic reset after protection	6	9	12	ms
DT	Dead time (Internal dead time injected by driver)		220	300	380	μs
V _{CCUV+} V _{BSUV+}	V _{DD} and V _{BS} supply undervoltage positive going input threshold		10.5	11.1	11.7	V

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V _{CCUV-} V _{BSUV-}	V _{DD} and V _{BS} supply undervoltage negative going input threshold		10.3	10.9	11.5	V
V _{CCUVH} V _{BSUVH}	$V_{\mbox{\scriptsize DD}}$ and $V_{\mbox{\scriptsize BS}}$ supply undervoltage lockout hysteresis		0.14	0.2	_	V

ELECTRICAL CHARACTERISTICS (Tc = 25°C, V_{BIAS} (V_{BS}, V_{DD}) = 15 V unless otherwise noted)

SWITCHING CHARACTER

•						
t _{ON}	Switching time	IC = 10 A, Tj = 25°C	-	0.35	0.7	μs
t _{OFF}			-	0.45	0.8	μs
E _{ON}	Turn-on switching loss	IC = 5 A, Tj = 25°C	-	89	-	μJ
E _{OFF}	Turn-off switching loss		-	74	-	μJ
E _{TOT}	Total switching loss		-	163	-	μJ
E _{ON}	Turn-on switching loss	IC = 5 A, Tj = 100°C	-	125	-	μJ
E _{OFF}	Turn-off switching loss		-	82	-	μJ
E _{TOT}	Total switching loss		-	207	-	μJ
E _{REC}	Diode reverse recovery energy	IC = 5 A, Tj = 100°C	-	40	-	μJ
t _{RR}	Diode reverse recovery time		-	150	-	ns
RBSOA	Reverse bias safe operating area	IC = 20 A, V _{CE} = 450 V	Full Square			
SCSOA	Short circuit safe operating area	V _{CE} = 400 V, Tj = 150°C	5	_	-	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. VBS = VBU to U, VBV to V, VBW to W

TYPICAL CHARACTERISTICS INV SECTION

Figure 5. V_F versus I_F for Different Temperatures

Figure 7. E_{OFF} versus I_C for Different Temperatures

Figure 10. Turn-off Waveform Tj = 100°C, V_{CC} = 300 V

APPLICATIONS INFORMATION

Input/Output Timing Chart

NOTES:

7. This section of the timing diagram shows the effect of cross-conduction prevention.

8. This section of the timing diagram shows that when the voltage on V_{DD} decreases sufficiently all gate output signals will go low, switching off all six IGBTs. When the voltage on V_{DD} rises sufficiently, normal operation will resume.

This section shows that when the bootstrap voltage on VB(U) (VB(V), VB(W)) drops, the corresponding high side output U (V, W) is 9. switched off. When the voltage on VB(U) (VB(V), VB(W)) rises sufficiently, normal operation will resume. 10. This section shows that when the voltage on ITRIP exceeds the threshold, all IGBT's are turned off. Normal operation resumes later after

the over-current condition is removed.

Input/Output Logic Table

Table 1. INPUT/OUTPUT LOGIC TABLE

INPUT			OUTPUT			
HIN	LIN	T/ITRIP	High Side IGBT	Low Side IGBT	U, V, W	
L	Н	L	ON	OFF	Р	
Н	L	L	OFF	ON	NU, NV, NW	
Н	Н	L	OFF	OFF	High Impedance	
L	L	L	OFF	OFF	High Impedance	
Х	Х	Н	OFF	OFF	High Impedance	

Thermistor Characteristics

Table 2. THERMISTOR CHARACTERISTICS

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R ₂₅	Resistance	Tth = 25°C	99	100	101	kΩ
R ₁₂₅		Tth = 125°C	2.40	2.52	2.65	kΩ
В	B-Constant (25 to 50°C)		-4207	4250	4293	к
	Temperature Range		-40	_	+125	°C

Figure 13. Thermistor Voltage versus Thermistor Temperature Conditions: RP = 4.3 k Ω 1% Pull-down and VDD = 15.0 V (See below)

Figure 14. Sample Application Circuit for Temperature Monitoring

TEST CIRCUITS

• I_{CE, IR(DB)}

	U+	V+	W+	U-	V-	W–
А	10	10	10	8	5	2
В	8	5	2	12	13	14

 U_{+},V_{+},W_{+} : High side phase U_{-},V_{-},W_{-} : Low side phase

W(DB)

1

23

VBS = 15 V	7	A	
VBS = 15 V	4		VCE, VR
VBS = 15 V	1		T
VDD = 15 V	22 23, 12, 13, 14	В	

А

В

U(DB)

7

23

V(DB)

4

23

	U+	V+	W+	U-	V -	W–
А	10	10	10	8	5	2
В	8	5	2	12	13	14
С	15	16	17	18	19	20

Figure 16. Test Circuit for V_{CE(SAT)}

• VF (Test by pulse)

	U+	V+	W+	U-	V-	W–
А	10	10	10	8	5	2
В	8	5	2	12	13	14

	U(DB)	V(DB)	W(DB)
А	7	4	1
В	22	22	22

• ID

	VBS U+	VBS V+	VBS W+	V _{DD}
А	7	4	1	22
В	8	5	2	23

• Switching time (The circuit is a representative example of the lower side U phase.)

Figure 17. Test Circuit for V_F

Figure 18. Test Circuit for ID

	-	-				
	U+	V+	W+	U-	V -	W –
A	10	10	10	10	10	10
В	12	13	14	12	13	14
C	8	5	2	10	10	10
D	12	13	14	8	5	2
E	15	16	17	18	19	20

Figure 19. Test Circuit for Switching Time

SIP23, 62x21.8 FP-4 CASE 127FC ISSUE O

DATE 07 JAN 2019

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>