

881F Series High-Current Fast Opening SMD Fuse

Agency Approvals

AGENCY	AGENCY FILE NUMBER	AMPERE RANGE
c FU °us	E71611	70 – 100A
€	NA	70 – 100A

Electrical Characteristics for Series

% of Ampere Rating	OpeningTime
100%	1 Hour, Min.
200%	60 Seconds, Max.

Applications

- Blade Servers
- Routers
- High-power Battery
 Systems

Electrical Specifications by Item

Power Factor Correction (PFC) in high wattage power supplies

 Power Distribution Units (PDUs)

Description

This high-current SMD fuse is a small, square, surface mount fuse that is designed as supplemental overcurrent protection for high-current circuits in various applications. This faster opening version enhances protection of the product from overload and short circuit current events in the application.

Features

- Available in 70A, 80A, and 100A ratings
- High interrupting rating -1500A @ 75Vdc
- With faster opening time response
- Surface mountable high current fuse

Lead-free, Halogen-free, and RoHS compliant

fuse design

UL Recognized to
 UL/CSA/NMX 248-1

Robust and solderless

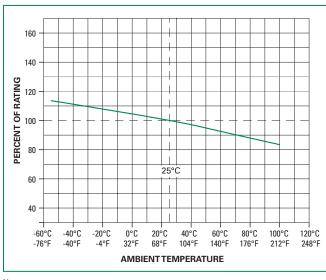
RoHS 🗭 HF (C c 🖓 us

Benefits

- Single fuse solution for high current applications
- Suitable for a wide variety of voltage requirement and application
- Guaranteed protection against overload and short circuit current events
- Compatible with high volume assembly requirements
- Enhanced product reliability and performance

Ampere Rating (A)	Amp Code	Max Voltage Rating (V)	Interrupting Rating	Nominal Cold Resistance (mOhms)	Nominal Voltage Drop * (mV)	Nominal Melting ** I²t (A²sec)	Agency Approvals c Sus
70	070.	75Vdc	1500A @75Vdc	0.82	89	1050	Х
80	080.			0.63	86	2000	Х
100	100.			0.52	96	4800	Х

* Nominal Voltage Drop measured at 100% rated Current. ** Nominal Melting I²t measured at 1500A.

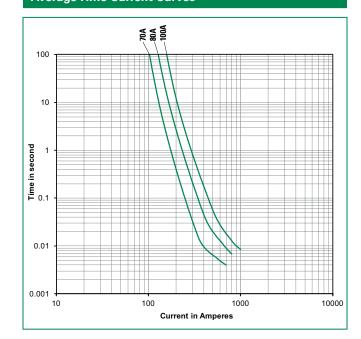

Thermal Characteristics

Ampere Rating I_n (A)	Typical Case Temperature Rise (°C) *			
	@ 50%l _n	@ 75%l _n	@ 100%I _n	
70	16	38	73	
80	25	58	88	
100	32	60	127	

* Typical values based on tests conducted with fuse mounted on FR-4 circuit board of 0.062" (1.6 mm) thickness with 6 oz. (210 µm) Cu.

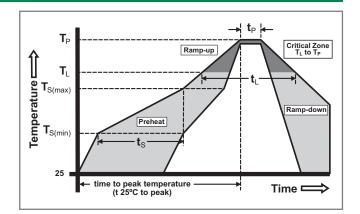
Temperature Re-rating Curve

Note:

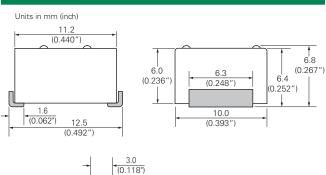

1. Rerating depicted in this curve is in addition to the standard derating of 25% for continuous operation.

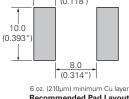
Example:

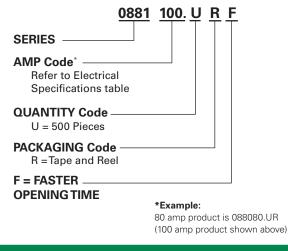
For continuous operation at 70°C, the fuse should be re-rated as follows: I = $(0.75)(0.90)I_{RAT} = (0.675)I_{RAT}$


2. The temperature re-rating curve represents nominal conditions. For questions about the temperature re-rating curve, please consult Littlefuse technical support assistance.

Average Time Current Curves


Soldering Parameters


Reflow Condition		Pb – Free assembly	
Number o	f allowed reflow cycles	3	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (Min to Max) (t _s)	60 – 180 secs	
Average ra (T _L) to pea	amp up rate (LiquidusTemp k	5°C/second max.	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max.	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260+0/-5 °C	
Time with Temperatu	in 5°C of actual peak ıre (t _p)	20 – 40 seconds	
Ramp-down Rate		5°C/second max.	
Time 25°C	to peakTemperature (T _P)	8 minutes max.	
Do not exc	ceed	260°C	



Recommended Pad Layout

Part Numbering System

Product Characteristics

Materials	Body: Thermoplastic, RTI 150°C Terminations: Tin-plated Copper		
Product Marking	Brand logo, Voltage Rating, 'F' (Faster Opening Time), and Ampere Rating		
Operating Temperature ^{1 2}	-55° to +100°C with proper derating		

Notes:

1. Based on loading at 75% of ampere rating when mounted using recommended pad layout. Usage outside of stated operating temperature range requires testing in application. Maintain case temperature below 150°C in application.

Thermal Shock	MIL-Std 202 Method 107 Test Condition B (-65°C to 125°C, 5 cycles).		
Moisture Resistance	MIL-Std 202 method 106 High Humidity (90-98%RH), Heat (65°C)		
Vibration	MIL-STD-202, Method 201 (10-55 Hz)		
Mechanical Shock	MIL-STD-202, Method 213, Test Condition I (100 G's peak for 6 milliseconds)		
Resistance to Solder Heat	MIL-Std 202 Method 210 Test Condition B (10sec at 260°C)		
Solderability	MIL-STD-202 Method 208		
MSL Test	Level 1 J-STD-020		
Salt Fog	MIL-Std 202 Method 101 Test Condition B (5% NaCL solution, 48 hours exposure)		

Packaging				
Packaging Option	Packaging Specification	Quantity	Quantity & Packaging Code	
24mm Tape and Reel	EIA-481 Rev. D (IEC 60286, part 3)	500	UR	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.