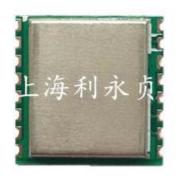


LCR1-1268H 无线 SPI 收发模块说明书

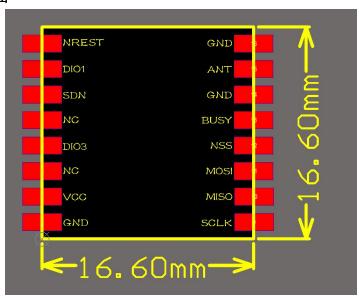

版本 V1.2

一、产品说明

SX1268 无线 SPI 模块是基于 SEMTECH 开发的一款远程大容量网络系统解决方案 SX1268 开发的,除传统的 GFSK 调制技术外,新型的 SX126x 平台还采用了 LoRa(远程)扩频技术。该模块具有高效的接收灵敏度和超强的抗干扰性能。该系列模组可以非常容易地嵌入到现有产品或系统的当中,使通信不再采用有线连接,客户只需在原有的微控制器件编译自定义的通讯协议,即可激活双向通信实现数据传输。

1.1 产品外观图

1.2 技术参数


1.2 仅不多数			
类 别	指标名称	无线模块	
	调制方式	LoRaTM 扩频、FSK 模式	
	频率范围	410-510MHz	
	发射功率	5dBm~22dBm	
	接收灵敏度	-147dBm(SF=12,BW=10.4K)	
工化针版	传输速率	扩频因子(SF)和带宽(BW)设置	
无线射频 	传输距离	大于 6000 米(SF=12,BW=10.4K)	
	天线连接	外置 SMA 天线、弹簧天线、吸盘	
	FIFO	最大 256 个字节	
	低电压检测	当电压低于阀值时,产生低电压中断	
	CAD 检测	支持无线唤醒	
功耗	输入电压	DC 3.3V	
功 耗 	最大发射电流	≤120mA(22dBm)	

LCR1-1268H 无线 SPI 收发模块说明书 V1. 2

	最大接收电流	<5mA
	休眠电流	<1uA
工作环境	工作温度	-40℃~ 85℃
外观尺寸	长*宽*高	16.6*16.6*4 (mm)

1.3 外观尺寸图

无线 SPI 模块提供 SPI 数据接口,方便用户安装和使用,具体的引脚如下表:

管脚序号	标识	功能	备注
1	NRESTET	复位触发	GPIO 输出 I/O
2	DIO1	数字 I/O 口	GPIO 输出 I/O
3	SDN	控制射频开关	发射拉低,接收时拉高,休 眠拉低
4	NC		
5	DIO3	数字 I/O 口	GPIO 输出 I/O
6	NC		
7	3.3V	电源	3.3V(1.8~3.3V)
8	GND	电源地	
9	SCLK	SPI 时钟	GPIO 输入
10	MISO	SPI 数据输出	GPIO 输出
11	MOSI	SPI 数据输入	GPIO 输入
12	NSS	SPI 片选	GPIO 输入
13	BUSY	控制模块状态	GPIO 输入

LCR1-1268H 无线 SPI 收发模块说明书 V1. 2

14	GND	天线地	
15	ANT	天线输出口	
16	GND	天线地	

二、硬件具体说明

2.1 SPI 总线

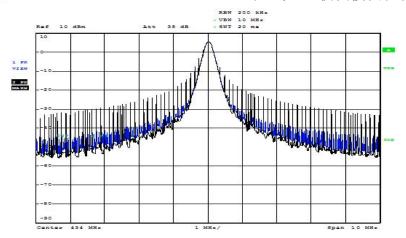
NSS(SEL): SPI 片选 MOSI: 主输从入 MISO: 主入从出

SCK: SPI 时钟

2.2 DIO 口使用说明

DIO1:状态的输出通过 DIO1 口来实现,具体如下表格

Bit	IRQ	Description	Modulation
0	TxDone	Packet transmission completed	All
1	RxDone	Packet received	All
2	PreambleDetected	Preamble detected	All
3	SyncWordValid	Valid sync word detected	FSK
4	HeaderValid	Valid LoRa header received	LoRa*
5	HeaderErr	LoRa header CRC error	LoRa®
6	CrcErr	Wrong CRC received	All
7	CadDone	Channel activity detection finished	LoRa*
8	CadDetected	Channel activity detected	LoRa*
9	Timeout	Rx or Tx timeout	All


DIO3:用于外部有源晶振电压的控制,此模块是无源晶振,因此该管脚直接悬空,不接单片机管脚。

三、参数详解

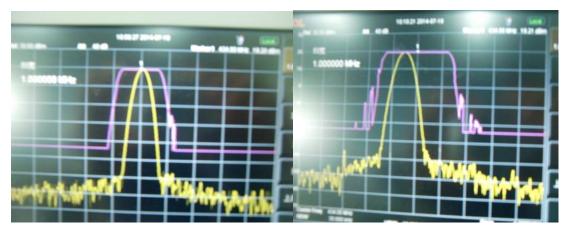
3.1 载波频率:

以这个频率基准进行扩频载频,如果无数据发送,那么就是出一个载波信号。

LCR1-1268H 无线 SPI 收发模块说明书 V1.2

3.2 扩频因子

扩频因子是码分多址的基本组成部分,码片速率=符号速率*扩频因子,扩频因子的使用使得 TD 中的信道的符号速率选择性更大,为业务 QOS 保证提供了强有力的支持,扩频因子也决定了可接入中端的数量。扩频因子的大小决定了一个用户的实际数据数率的大小(注意,这里说的是实际数据,例如大家都传输11111111 这个数据,A 用 11 表示 1,那么他的实际数据是 1111,而 B 用 1111 表示 1,那么他的实际数据为 11,这样 B 的出错概率就比 A 小,但他的数据数率也比 A 小)但是因为正交码的存在,从基站上看,提高扩频因子,对某一用户的实际数据数率降低了,但同时的可用用户数多了(扩频码)整体的实际数据数率却没变。


SCLK	SPI 时钟	GPIO 输入
MISO	SPI 数据输出	GPIO 输出
MOSI	SPI 数据输入	GPIO 输入
NSS	SPI 片选	GPIO 输入

3.3 扩频带宽

扩频带宽,简单的说就是你的信号是在以基频为基准多宽的频率下进行调制。 下图是 125K 和 250K 的扩频带宽图(紫线是保持,黄线是调制信号线)。扩频 带宽的设置也取决于晶体精度是否支持,我们推荐最低的扩频带宽是 125K。

LCR1-1268H 无线 SPI 收发模块说明书 V1.2

125K 扩频带宽图

250K 扩频带宽图

四、应用场合

无线门禁考勤 无线智能家庭 RFID 数据传输 无线医疗监护 无线电力抄表

无线电力测控 无线智能公交 无线三表集抄

石化无线测控 无线点餐系统 无线管线监测 无线智能家居

油田无线测控 无线安防报警 无线水利监测 无线路灯控制

无线机房监控 无线仓库监测 无线智能交通 无线定位系统